In Silico Identification and Functional Characterization of Conserved miRNAs in the Genome of Cryptosporidium parvum

1. Mahmoudi, MR, Ongerth, JE, Karanis, P. Cryptosporidium and cryptosporidiosis: the Asian perspective. Int J Hyg Environ Health. 2017;220:1098-1109.
Google Scholar | Crossref | Medline2. Tandel, J, English, ED, Sateriale, A, Gullicksrud, JA, et al. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat Microbiol. 2019;4:2226-2236.
Google Scholar | Crossref | Medline3. Xiao, L, Fayer, R, Ryan, U, Upton, SJ. Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev. 2004;17:72-97.
Google Scholar | Crossref | Medline | ISI4. Ryan, U, Hijjawi, N, Xiao, L. Foodborne cryptosporidiosis. Int J Parasitol. 2018;48:1-12.
Google Scholar | Crossref | Medline5. Areeshi, MY, Beeching, NJ, Hart, CA. Cryptosporidiosis in Saudi Arabia and neighboring countries. Ann Saudi Med. 2007;27:325-332.
Google Scholar | Crossref | Medline6. Wang, RJ, Li, JQ, Chen, YC, Zhang, LX, Xiao, LH. Widespread occurrence of Cryptosporidium infections in patients with HIV/AIDS: epidemiology, clinical feature, diagnosis, and therapy. Acta Trop. 2018;187:257-263.
Google Scholar | Crossref | Medline7. Budu-Amoako, E, Greenwood, SJ, Dixon, BR, Barkema, HW, McClure, JT. Foodborne illness associated with Cryptosporidium and Giardia from livestock. J Food Prot. 2011;74:1944-1955.
Google Scholar | Crossref | Medline8. Al Mawly, J, Grinberg, A, Velathanthiri, N, French, N. Cross sectional study of prevalence, genetic diversity and zoonotic potential of Cryptosporidium parvum cycling in New Zealand dairy farms. Parasit Vectors. 2015;8:240.
Google Scholar | Crossref | Medline9. Delafosse, A, Chartier, C, Dupuy, MC, Dumoulin, M, Pors, I, Paraud, C. Cryptosporidium parvum infection and associated risk factors in dairy calves in western France. Prev Vet Med. 2015;118:406-412.
Google Scholar | Crossref | Medline10. Ryan, U, Paparini, A, Monis, P, Hijjawi, N. It’s official – Cryptosporidium is a gregarine: what are the implications for the water industry? Water Res. 2016;105:305-313.
Google Scholar | Crossref | Medline11. Curcio, JS, Batista, MP, Paccez, JD, Novaes, E, Soares, CMA. In silico characterization of microRNAs-like sequences in the genome of Paracoccidioides brasiliensis. Genet Mol Biol. 2019;42:95-107.
Google Scholar | Crossref | Medline12. Akter, A, Islam, MM, Mondal, SI, Mahmud, Z, et al. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci. 2014;21:3-12.
Google Scholar | Crossref | Medline13. Hanif, Q, Farooq, M, Amin, I, Mansoor, S, Zhang, Y, Khan, QM. In silico identification of conserved miRNAs and their selective target gene prediction in indicine (Bos indicus) cattle. PLoS ONE. 2018;13:e0206154.
Google Scholar | Crossref | Medline14. Jike, W, Sablok, G, Bertorelle, G, Li, M, Varotto, C. In silico identification and characterization of a diverse subset of conserved microRNAs in bioenergy crop Arundo donax L. Sci Rep. 2018;8:16667.
Google Scholar | Crossref | Medline15. Lytle, JR, Yario, TA, Steitz, JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci USA. 2007;104:9667-9672.
Google Scholar | Crossref | Medline | ISI16. Lee, Y, Kim, M, Han, J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051-4060.
Google Scholar | Crossref | Medline | ISI17. Kurihara, Y, Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA. 2004;101:12753-12758.
Google Scholar | Crossref | Medline | ISI18. Kim, YK, Kim, B, Kim, VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA. 2016;113:E1881-E1889.
Google Scholar | Crossref | Medline19. Kobayashi, H, Tomari, Y. RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. 2016;1859:71-81.
Google Scholar | Crossref | Medline20. Huang, Y, Shen, XJ, Zou, Q, Wang, SP, Tang, SM, Zhang, GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67:129-139.
Google Scholar | Crossref | Medline | ISI21. Zhang, BH, Pan, XP, Cobb, GP, Anderson, TA. Plant microRNA: a small regulatory molecule with big impact. Dev Biol. 2006;289:3-16.
Google Scholar | Crossref | Medline22. Shao, CC, Xu, MJ, Alasaad, S, et al. Comparative analysis of microRNA profiles between adult Ascaris lumbricoides and Ascaris suum. BMC Vet Res. 2014;10:99.
Google Scholar | Crossref | Medline23. Trobaugh, DW, Klimstra, WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med. 2017;23:80-93.
Google Scholar | Crossref | Medline24. Benson, DA, Cavanaugh, M, Clark, K, et al. GenBank. Nucleic Acids Res. 2018;46:D41-D47.
Google Scholar | Crossref | Medline25. Griffiths-Jones, S, Saini, HK, van Dongen, S, Enright, AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154-D158.
Google Scholar | Crossref | Medline | ISI26. Adl, SM, Simpson, AGB, Lane, CE, et al. The revised classification of eukaryotes [Erratum in: J Eukaryot Microbiol. 60:321]. J Eukaryot Microbiol. 2012;59:429-493.
Google Scholar | Crossref | Medline27. Pal, AS, Kasinski, AL. Animal models to study microRNA function. Adv Cancer Res. 2017;135:53-118.
Google Scholar | Crossref | Medline28. Cock, PJ, Chilton, JM, Grüning, B, Johnson, JE, Soranzo, N. NCBI BLAST+ integrated into Galaxy. Gigascience. 2015;4:39.
Google Scholar | Crossref | Medline29. Paul, S, de la Fuente-Jiménez, JL, Manriquez, CG, Sharma, A. Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech. 2020;10:25.
Google Scholar | Crossref | Medline30. Prakash, P, Ghosliya, D, Gupta, V. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene. 2015;554:181-195.
Google Scholar | Crossref | Medline31. Singh, N, Srivastava, S, Sharma, A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene. 2016;575:570-576.
Google Scholar | Crossref | Medline32. Xu, JH, Li, F, Sun, QF. Identification of microRNA precursors with support vector machine and string kernel. Genomics Proteomics Bioinformatics. 2008;6:121-128.
Google Scholar | Crossref | Medline33. Zhang, BH, Wang, Q, Wang, K, et al. Identification of cotton microRNAs and their targets. Gene. 2007;397:26-37.
Google Scholar | Crossref | Medline34. Gao, D, Middleton, R, Rasko, JE, Ritchie, W. miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics. 2013;29:3225-3226.
Google Scholar | Crossref | Medline35. Zuker, M . Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406-3415.
Google Scholar | Crossref | Medline | ISI36. Zhang, BH, Pan, XP, Cox, SB, Cobb, GP, Anderson, TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63:246-254.
Google Scholar | Crossref | Medline | ISI37. Ambros, V, Bartel, B, Bartel, DP, et al. A uniform system for microRNA annotation. RNA. 2003;9:277-279.
Google Scholar | Crossref | Medline | ISI38. Sievers, F, Higgins, DG. Clustal omega. Curr Protoc Bioinformatics. 2014;48:3.13.1-3.13.16.
Google Scholar | Crossref | Medline39. Agarwal, V, Subtelny, AO, Thiru, P, Ulitsky, I, Bartel, DP. Predicting microRNA targeting efficacy in Drosophila. Genome Biol. 2018;19:152.
Google Scholar | Crossref | Medline40. Stalker, J, Gibbins, B, Meidl, P, et al. The Ensembl Web site: mechanics of a genome browser. Genome Res. 2004;14:951-955.
Google Scholar | Crossref | Medline41. Thurmond, J, Goodman, JL, Strelets, VB, et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 2019;47:D759-D765.
Google Scholar | Crossref | Medline42. Kanehisa, M, Furumichi, M, Tanabe, M, Sato, Y, Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353-D361.
Google Scholar | Crossref | Medline43. Bortoluzzi, S, Bisognin, A, Biasiolo, M, et al. Characterization and discovery of novel miRNAs and moRNAs in JAK2V617F-mutated SET2 cells. Blood. 2012;119:e120-e130.
Google Scholar | Crossref | Medline44. Zhang, B, Pan, X, Cannon, CH, Cobb, GP, Anderson, TA. Conservation and divergence of plant microRNA genes. Plant J. 2006;46:243-259.
Google Scholar | Crossref | Medline | ISI45. Templeton, TJ, Lancto, CA, Vigdorovich, V, et al. The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect Immun. 2004;72:980-987.
Google Scholar | Crossref | Medline46. Bouzid, M, Hunter, PR, Chalmers, RM, Tyler, KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013;26:115-134.
Google Scholar | Crossref | Medline | ISI47. Sanderson, SJ, Xia, D, Prieto, H, et al. Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics. 2008;8:1398-1414.
Google Scholar | Crossref | Medline | ISI48. Johnson, JK, Schmidt, J, Gelberg, HB, Kuhlenschmidt, MS. Microbial adhesion of Cryptosporidium parvum sporozoites: purification of an inhibitory lipid from bovine mucosa. J Parasitol. 2004;90:980-990.
Google Scholar | Crossref | Medline49. Pundir, S, Martin, MJ, O’Donovan, C. UniProt protein knowledgebase. Methods Mol Biol. 2017;1558:41-55.
Google Scholar | Crossref | Medline50. Singh, P, Mirdha, BR, Srinivasan, A, et al.

留言 (0)

沒有登入
gif