A Computational-Based Drug Repurposing Method Targeting SARS-CoV-2 and its Neurological Manifestations Genes and Signaling Pathways

1. Guan, W-J, Ni, Z, Hu, Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-1720.
Google Scholar | Crossref | Medline2. Pan, F, Ye, T, Sun, P, et al. Time course of lung changes at chest CT during recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020;295:715-721.
Google Scholar | Crossref | Medline3. Varatharaj, A, Thomas, N, Ellul, MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatr. 2020;7:875-882.
Google Scholar | Crossref | Medline4. Mao, L, Jin, H, Wang, M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683-690.
Google Scholar | Crossref | Medline5. Kremer, S, Lersy, F, Anheim, M, et al. Neurologic and neuroimaging findings in patients with COVID-19: a retrospective multicenter study. 2020;95:e1868-e1882.
Google Scholar6. Xiong, W, Mu, J, Guo, J, et al. New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology. 2020;95:e1479-e1487.
Google Scholar | Crossref7. Nepal, G, Rehrig, JH, Shrestha, GS, et al. Neurological manifestations of COVID-19: a systematic review. Critical Care. 2020;24:421.
Google Scholar | Crossref | Medline8. Corrêa, DG, Hygino da Cruz, LC, Lopes, FCR, et al. Magnetic resonance imaging features of COVID-19-related cranial nerve lesions. J Neurovirol. 2021;27:171-177.
Google Scholar | Crossref | Medline9. Zayet, S, Klopfenstein, T, Kovẚcs, R, Stancescu, S, Hagenkötter, B. Acute Cerebral Stroke with Multiple Infarctions and COVID-19, France, 2020. Emerg Infect Dis. 2020;26:2258-2260.
Google Scholar | Crossref10. Fonseca, E, Quintana, M, Lallana, S, et al. Epilepsy in time of COVID-19: a survey-based study. Acta Neurol Scand. 2020;142:545-554.
Google Scholar | Crossref | Medline11. Moriguchi, T, Harii, N, Goto, J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-58.
Google Scholar | Crossref | Medline12. Mahalaxmi, I, Kaavya, J, Mohana Devi, S, Balachandar, V. COVID-19 and olfactory dysfunction: a possible associative approach towards neurodegenerative diseases. J Cell Physiol. 2021;236:763-770.
Google Scholar | Crossref | Medline13. Prasad, K, Al Omar, SY, Alqahtani, SAM, Malik, MZ, Kumar, V. Brain disease network analysis to elucidate the neurological manifestations of COVID-19. Mol Neurobiol. 2021;58:1875-1893.
Google Scholar | Crossref | Medline14. Sepehrinezhad, A, Shahbazi, A, Negah, SS. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J Neurovirol. 2020;26:324-329.
Google Scholar | Crossref | Medline15. Bougakov, D, Podell, K, Goldberg, E. Multiple neuroinvasive pathways in COVID-19. Molec Neurobiol. 2020;58:564-575.
Google Scholar | Crossref | Medline16. Li, Y-C, Bai, W-Z, Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-555.
Google Scholar | Crossref | Medline17. Kumari, P, Rothan, HA, Natekar, JP, et al. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 Mice. Viruses. 2021;13:132.
Google Scholar | Crossref | Medline18. Baker, EJ, Jay, JJ, Bubier, JA, Langston, MA, Chesler, EJ. GeneWeaver: a web-based system for integrative functional genomics. Nucleic Acids Res. 2011;40:D1067-D1076.
Google Scholar19. Zhang, BZ, Chu, H, Han, S, et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 2020;30:928-931.
Google Scholar | Crossref | Medline20. Hanafi, R, Roger, PA, Perin, B, et al. COVID-19 neurologic complication with CNS vasculitis-like pattern. AJNR. 2020;41:1384-1387.
Google Scholar | Crossref | Medline21. Blanco-Melo, D, Nilsson-Payant, BE, Liu, W-C, et al. SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems [published online ahead of print March 24, 2020]. Biorxiv. doi:10.1101/2020.03.24.004655.
Google Scholar | Crossref22. Chua, RL, Lukassen, S, Trump, S, et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol. 2020;38:970-979.
Google Scholar | Crossref | Medline23. Szklarczyk, D, Morris, JH, Cook, H, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016;45:D362-D368.
Google Scholar | Crossref | Medline24. Hillenmeyer, S, Davis, LK, Gamazon, ER, et al. STAMS: STRING-assisted module search for genome wide association studies and application to autism. Bioinformatics. 2016;32:3815-3822.
Google Scholar | Crossref | Medline25. Li, Y, Goldenberg, A, Wong, K-C, Zhang, Z. A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information. Bioinformatics. 2013;30:621-628.
Google Scholar | Crossref | Medline26. Hanneman, RA, Riddle, M. Centrality and Power. Introduction to social network methods (pp. 60-76). University of California Riverside, 2005.
Google Scholar27. Hillje, R, Pelicci, PG, Luzi, L. Cerebro: interactive visualization of scRNA-seq data. Bioinformatics. 2019;36:2311-2313.
Google Scholar | Crossref28. Yashavantha Rao, HC, Jayabaskaran, C. The emergence of a novel coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients. J Med Virol. 2020;92:786-790.
Google Scholar | Crossref | Medline29. Xu, J, Lazartigues, E. Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus [published online ahead of print July 4, 2020]. Cell Molec Neurobiol. doi:10.1007/s10571-020-00915-1.
Google Scholar | Crossref30. Freni, F, Meduri, A, Gazia, F, et al. Symptomatology in head and neck district in coronavirus disease (COVID-19): a possible neuroinvasive action of SARS-CoV-2. Am J Otolaryngol. 2020;41:102612.
Google Scholar | Crossref | Medline31. Mukerji, SS, Solomon, IH. What can we learn from brain autopsies in COVID-19? Neurosci Lett. 2021;742:135528.
Google Scholar | Crossref | Medline32. Matschke, J, Lütgehetmann, M, Hagel, C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19:919-929.
Google Scholar | Crossref | Medline33. Lee, M-H, Perl, DP, Nair, G, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2020;384:481-483.
Google Scholar | Crossref | Medline34. Huang, C, Wang, Y, Li, X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.
Google Scholar | Crossref | Medline35. Zhang, C, Wu, Z, Li, J-W, Zhao, H, Wang, G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;2020:105954.
Google Scholar | Crossref36. Xu, Z, Shi, L, Wang, Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420-422.
Google Scholar | Crossref | Medline37. Beck, BR, Shin, B, Choi, Y, Park, S, Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J. 2020;18:784-790.
Google Scholar | Crossref | Medline38. Ekins, S, Mottin, M, Ramos, PRPS, et al. Déjà vu: stimulating open drug discovery for SARS-CoV-2. Drug Discov Today. 2020;25:928-941.
Google Scholar | Crossref | Medline39. Arshad, U, Pertinez, H, Box, H, et al. Prioritisation of potential anti-sars-cov-2 drug repurposing opportunities based on ability to achieve adequate target site concentrations derived from their established human pharmacokinetics [published online ahead of print April 22, 2020]. medRxiv. doi:10.1101/2020.04.16.20068379.
Google Scholar | Crossref40. Fintelman-Rodrigues, N, Sacromento, CQ, Lima, CR, et al. Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. Biorxiv. 2020;64:e00825-20.
Google Scholar41. Mohapatra, S, Nath, P, Chatterjee, M, et al. Repurposing therapeutics for COVID-19: rapid prediction of commercially available drugs through machine learning and docking. PLoS ONE. 2020;15:e0241543.
Google Scholar | Crossref42. Watari, I, Oka, S, Tanaka, S, et al. Effectiveness of polaprezinc for low-dose aspirin-induced small-bowel mucosal injuries as evaluated by capsule endoscopy: a pilot randomized controlled study. BMC Gastroenterol. 2013;13:108.
Google Scholar | Crossref | Medline43. Yoshikawa, T, Naito, Y, Tanigawa, T, Yoneta, T, Kondo, M. The antioxidant properties of a novel zinc-carnosine chelate compound, N-(3-aminopropionyl)-L-histidinato zinc. Biochim Biophys Acta. 1991;1115:15-22.
Google Scholar | Crossref | Medline44. Naito, Y, Yoshikawa, T. Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radical Biol Med. 2002;33:323-336.
Google Scholar | Crossref | Medline45. Omatsu, T, Naito, Y, Handa, O, et al. Reactive oxygen species-quenching and anti-apoptotic effect of polaprezinc on indomethacin-induced small intestinal epithelial cell injury. J Gastroenterol. 2010;45:692-702.
Google Scholar | Crossref | Medline46. Choi, HS, Lim, J-Y, Chun, JH, et al. The effect of polaprezinc on gastric mucosal protection in rats with ethanol-induced gastric mucosal damage: comparison study with rebamipide. Life Sci. 2013;93:69-77.
Google Scholar | Crossref | Medline47. Ueda, K, Ueyama, T, Oka, M, Ito, T, Tsuruo, Y, Ichinose, M. Polaprezinc (Zinc L-Carnosine) is a potent inducer of anti-oxidative stress enzyme, Heme Oxygenase (HO)-1 — a new mechanism of gastric mucosal protection. J Pharmacol Sci. 2009;110:285-294.
Google Scholar | Crossref | Medline48. Naito, Y, Yoshikawa, T, Yagi, N, et al. Effects of polaprezinc on lipid peroxidation, neutrophil accumulation, and TNF-alpha expression in rats with aspirin-induced gastric mucosal injury. Dig Dis Sci. 2001;46:845-851.
Google Scholar | Crossref | Medline | ISI49. Batra, N, De Souza, C, Batra, J, Raetz, AG, Yu, AM. The HMOX1 pathway as a promising target for the treatment and prevention of SARS-CoV-2 of 2019 (COVID-19). Int J Molec Sci. 2020;21:6412.
Google Scholar | Crossref

留言 (0)

沒有登入
gif