1.
Mao, Z, Shin, HD, Chen, R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl Microbiol Biotechnol. 2009;84:63-69.
Google Scholar |
Crossref |
Medline2.
Fakhari, A, Berkland, C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9:7081-7092.
Google Scholar |
Crossref |
Medline |
ISI3.
Tsepilov, RN, Beloded, AV. Hyaluronic acid – an ‘old’ molecule with ‘new’ functions: biosynthesis and depolymerization of hyaluronic acid in bacteria and vertebrate tissues including during carcinogenesis. Biochemistry (Mosc). 2015;80:1093-1108.
Google Scholar |
Crossref |
Medline4.
Kogan, G, Soltés, L, Stern, R, Gemeiner, P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17-25.
Google Scholar |
Crossref |
Medline |
ISI5.
Maharjan, AS, Pilling, D, Gomer, RH. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. PLoS ONE. 2011;6:e26078.
Google Scholar |
Crossref |
Medline6.
Rayahin, JE, Buhrman, JS, Zhang, Y, Koh, TJ, Gemeinhart, RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng. 2015;1:481-493.
Google Scholar |
Crossref |
Medline |
ISI7.
Wilson, BA, Ho, M. Pasteurella multocida: from zoonosis to cellular microbiology. Clin Microbiol Rev. 2013;26:631-655.
Google Scholar |
Crossref |
Medline8.
Wilkie, IW, Harper, M, Boyce, JD, Adler, B. Pasteurella multocida: diseases and pathogenesis. Curr Top Microbiol Immunol. 2012;361:1-22.
Google Scholar |
Medline9.
Okay, S, Kurt Kızıldoğan, A. Comparative genome analysis of five Pasteurella multocida strains to decipher the diversification in pathogenicity and host specialization. Gene. 2015;567:58-72.
Google Scholar |
Crossref |
Medline10.
Peng, Z, Wang, X, Zhou, R, Chen, H, Wilson, BA, Wu, B. Pasteurella multocida: genotypes and genomics. Microbiol Mol Biol Rev. 2019;83:e00014-19.
Google Scholar |
Crossref |
Medline11.
Harper, M, Boyce, JD, Adler, B. The key surface components of Pasteurella multocida: capsule and lipopolysaccharide. Curr Top Microbiol Immunol. 2012;361:39-51.
Google Scholar |
Medline |
ISI12.
Chong, BF, Blank, LM, McLaughlin, R, Nielsen, LK. Microbial hyaluronic acid production. Appl Microbiol Biotechnol. 2005;66:341-351.
Google Scholar |
Crossref |
Medline13.
Chu, X, Han, J, Guo, D, Fu, Z, Liu, W, Tao, Y. Characterization of UDP-glucose dehydrogenase from Pasteurella multocida CVCC 408 and its application in hyaluronic acid biosynthesis. Enzyme Microb Technol. 2016;85:64-70.
Google Scholar |
Crossref |
Medline14.
Widner, B, Behr, R, Von Dollen, S, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol. 2005;71:3747-3752.
Google Scholar |
Crossref |
Medline15.
Sze, JH, Brownlie, JC, Love, CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech. 2016;6:67.
Google Scholar |
Crossref |
Medline16.
Zhang, Y, Luo, K, Zhao, Q, Qi, Z, Nielsen, LK, Liu, H. Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus. Appl Microbiol Biotechnol. 2016;100:3611-3620.
Google Scholar |
Crossref |
Medline17.
Liu, L, Liu, Y, Li, J, Du, G, Chen, J. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact. 2011;10:99.
Google Scholar |
Crossref |
Medline18.
Weigel, PH. Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases. IUBMB Life. 2002;54:201-211.
Google Scholar |
Crossref |
Medline19.
Weigel, PH. Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol. 2015;2015:367579.
Google Scholar |
Crossref |
Medline20.
Jing, W, DeAngelis, PL. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology. 2000;10:883-889.
Google Scholar |
Crossref |
Medline21.
Weigel, PH, DeAngelis, PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem. 2007;282:36777-36781.
Google Scholar |
Crossref |
Medline22.
Yu, H, Stephanopoulos, G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng. 2008;10:24-32.
Google Scholar |
Crossref |
Medline23.
Brown, SH, Pummill, PE. Recombinant production of hyaluronic acid. Curr Pharm Biotechnol. 2008;9:239-241.
Google Scholar |
Crossref |
Medline24.
Jia, Y, Zhu, J, Chen, X, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol. 2013;132:427-431.
Google Scholar |
Crossref |
Medline25.
Wang, Y, Hu, L, Huang, H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Comm. 2020;11:3120.
Google Scholar |
Crossref |
Medline26.
Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-410.
Google Scholar |
Crossref |
Medline |
ISI27.
Crater, DL, van de Rijn, I. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J Biol Chem. 1995;270:18452-18458.
Google Scholar |
Crossref |
Medline28.
Izawa, N, Serata, M, Sone, T, Omasa, T, Ohtake, H. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng. 2011;111:665-670.
Google Scholar |
Crossref |
Medline29.
Katoh, K, Standley, DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772-780.
Google Scholar |
Crossref |
Medline |
ISI30.
Katoh, K, Misawa, K, Kuma, K, Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059-3066.
Google Scholar |
Crossref |
Medline |
ISI31.
Katoh, K, Kuma, K, Miyata, T, Toh, H. Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform. 2005;16:22-33.
Google Scholar |
Medline32.
Kumar, S, Stecher, G, Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-1874.
Google Scholar |
Crossref |
Medline |
ISI33.
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276-3278.
Google Scholar |
Crossref |
Medline34.
Schwede, T, Kopp, J, Guex, N, Peitsch, MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31:3381-3385.
Google Scholar |
Crossref |
Medline |
ISI35.
Benkert, P, Biasini, M, Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343-350.
Google Scholar |
Crossref |
Medline |
ISI36.
Waterhouse, A, Bertoni, M, Bienert, S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296-W303.
Google Scholar |
Crossref |
Medline37.
El- Gebali, S, Mistry, J, Bateman, A, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427-D432.
Google Scholar |
Crossref |
Medline38.
Krissinel, EKH . Multiple alignment of protein structures in three dimensions. In: Berthold, M, Diederichs, K, Kohlbacher, O, Fischer, I, eds. Computational Life Sciences: Lecture Notes in Computer Science. London: Springer; 2005:67-78.
Google Scholar |
Crossref39.
Guex, N, Peitsch, MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714-2723.
Google Scholar |
Crossref |
Medline |
ISI40.
Guex, N, Peitsch, MC, Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009;30:S162-S173.
Google Scholar |
Crossref |
Medline41.
Johansson, MU, Zoete, V, Michielin, O, Guex, N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics. 2012;13:173.
Google Scholar |
Crossref |
Medline42.
Volkamer, A, Kuhn, D, Rippmann, F, Rarey, M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28:2074-2075.
Google Scholar |
Crossref |
Medline43.
Volkamer, A, Kuhn, D, Grombacher, T, Rippmann, F, Rarey, M. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52:360-372.
Google Scholar |
Crossref |
Medline44.
Chung, JY, Zhang, Y, Adler, B. The capsule biosynthetic locus of Pasteurella multocida A:1. FEMS Microbiol Lett. 1998;166:289-296.
Google Scholar |
Crossref |
Medline45.
Boyce, JD, Chung, JY, Adler, B. Pasteurella multocida capsule: composition, function and genetics. J Biotech. 2000;83:153-160.
Google Scholar |
Crossref |
Medline46.
Wessels, MR . Capsular polysaccharide of group A streptococcus [published online ahead of print January 22, 2019]. Microbiol Spectr. doi:
10.1128/microbiolspec.GPP3-0050-2018. Google Scholar |
Crossref47.
DeAngelis, PL, Gunay, NS, Toida, T, Mao, W-J, Linhardt, RJ. Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydrate Res. 2002;337:1547-1552.
Google Scholar |
Crossref |
Medline48.
Schiraldi, C, Cimini, D, De Rosa, M. Production of chondroitin sulfate and chondroitin. Appl Microbiol Biotechnol. 2010;87:1209-1220.
Google Scholar |
Crossref |
Medline |
ISI49.
Mikami, T, Kitagawa, H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta. 2013;1830:4719-4733.
Google Scholar |
Crossref |
Medline50.
DeAngelis, PL, Padgett-McCue, AJ. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem. 2000;275:24124-24129.
Google Scholar |
Comments (0)