Feasibility of a real-time pattern-based kinematic feedback system for gait retraining in pediatric cerebral palsy

1. Accardo, PJ, Capute, AJ. Capute & accardo's neurodevelopmental disabilities in infancy and childhood. Baltimore: Paul H. Brookes Pub., 2008.
Google Scholar2. Novak, I, McIntyre, S, Morgan, C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol 2013; 55: 885–910.
Google Scholar | Crossref | Medline | ISI3. Sigrist, R, Rauter, G, Riener, R, et al. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev 2013; 20: 21–53.
Google Scholar | Crossref | Medline | ISI4. van Gelder, LMA, Barnes, A, Wheat, JS, et al. The use of biofeedback for gait retraining: a mapping review. Clin Biomech 2018; 59: 159–166.
Google Scholar | Crossref | Medline5. Schliessmann, D, Schuld, C, Schneiders, M, et al. Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill. Front Hum Neurosci 2014; 8: 416.
Google Scholar | Medline6. Levin, I, Lewek, MD, Feasel, J, et al. Gait training with visual feedback and proprioceptive input to reduce gait asymmetry in adults with cerebral palsy: a case series. Pediatr Phys Ther 2017; 29: 138–145.
Google Scholar | Crossref | Medline7. van Gelder, L, Booth, ATC, van de Port, I, et al. Real-time feedback to improve gait in children with cerebral palsy. Gait Posture 2017; 52: 76–82.
Google Scholar | Crossref | Medline8. Booth, AT, Buizer, AI, Harlaar, J, et al. Immediate effects of immersive biofeedback on gait in children with cerebral palsy. Arch Phys Med Rehabil 2018; 100: 598--605.
Google Scholar | Medline9. Byl, N, Zhang, W, Coo, S, et al. Clinical impact of gait training enhanced with visual kinematic biofeedback: patients with Parkinson's disease and patients stable post stroke. Neuropsychologia 2015; 79: 332–343.
Google Scholar | Crossref | Medline10. Ginis, P, Nieuwboer, A, Dorfman, M, et al. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson's disease: a pilot randomized controlled trial. Parkinsonism Relat Disord 2016; 22: 28–34.
Google Scholar | Crossref | Medline11. Schliessmann, D, Nisser, M, Schuld, C, et al. Trainer in a pocket – proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients. J Neuroeng Rehabil 2018; 15: 44.
Google Scholar | Crossref | Medline12. Oliveira, N, Ehrenberg, N, Cheng, J, et al. Visual kinematic feedback enhances the execution of a novel knee flexion gait pattern in children and adolescents. Gait Posture 2019; 74: 94–101.
Google Scholar | Crossref | Medline13. Bovi, G, Rabuffetti, M, Mazzoleni, P, et al. A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 2011; 33: 6–13.
Google Scholar | Crossref | Medline | ISI14. Sakoe, H, Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 1978; 26: 43–49.
Google Scholar | Crossref15. Oliveira, NE, N, Cheng, J, Barrance, PJ. Phase offset error attenuation in pattern based feedback for gait retraining. In: American society of biomechanics conference, Rochester, MN, 8--11 August 2018.
Google Scholar16. Palisano, RJ, Rosenbaum, P, Bartlett, D, et al. Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol 2008; 50: 744–750.
Google Scholar | Crossref | Medline | ISI

Comments (0)

No login
gif
Back To Top