Mapping of electrodermal activity (EDA) during outdoor community-level mobility tasks in individuals with lower-limb amputation

1. Sagawa, Y, Turcot, K, Armand, S, et al. Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture 2011; 33: 511–526.
Google Scholar | Crossref | Medline | ISI2. Miller, WC, Speechley, M, Deathe, AB. Balance confidence among people with lower-limb amputations. Phys Ther 2002; 82: 856–65.
Google Scholar | Crossref | Medline | ISI3. Kulkarni, J, Wright, S, Toole, C, et al. Falls in patients with lower limb amputations: prevalence and contributing factors. Physiotherapy 1996; 82: 130–136.
Google Scholar | Crossref4. Mancini, M, Horak, FB. The relevance of clinical balance assessment tools to differentiate balance deficits. Eur J Phys Rehab Med 2010; 46: 239.
Google Scholar | Medline | ISI5. Sinha, R, van den Heuvel, WJ, Arokiasamy, P. Factors affecting quality of life in lower limb amputees. Prosthet Orthot Int 2011; 35: 90–96.
Google Scholar | SAGE Journals | ISI6. Zidarov, D, Swaine, B, Gauthier-Gagnon, C. Quality of life of persons with lower-limb amputation during rehabilitation and at 3-month follow-up. Arch Phys Med Rehab 2009; 90: 634–645.
Google Scholar | Crossref | Medline | ISI7. Asano, M, Rushton, P, Miller, WC, et al. Predictors of quality of life among individuals who have a lower limb amputation. Prosthet Orthot Int 2008; 32: 231–243.
Google Scholar | SAGE Journals | ISI8. Miller, WC, Deathe, AB, Speechley, M. Psychometric properties of the activities-specific balance confidence scale among individuals with a lower-limb amputation1. Arch Phys Med Rehab 2003; 84: 656–661.
Google Scholar | Crossref | Medline | ISI9. Hafner, BJ, Morgan, SJ, Askew, RL, et al. Psychometric evaluation of self-report outcome measures for prosthetic applications. J Rehab Res Dev 2016; 53:797, 812.
Google Scholar | Crossref | Medline10. Hunt, SM, Bhopal, R. Self report in clinical and epidemiological studies with non-English speakers: the challenge of language and culture. J Epidemiol Commun Health 2004; 58: 618–622.
Google Scholar | Crossref | Medline | ISI11. Paulhus, DL, Vazire, S. The self-report method. In: Robins RW, Fraley RC and Krueger RF (eds) Handbook of research methods in personality psychology. New York: Guilford Press, 2007, pp.224–239.
Google Scholar12. Boucsein, W. Electrodermal activity. Berlin: Springer Science & Business Media, 2012.
Google Scholar | Crossref13. Critchley, HD, Elliott, R, Mathias, CJ, et al. Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 2000; 20: 3033–3040.
Google Scholar | Crossref | Medline | ISI14. Pollock, CL, Carpenter, MG, Hunt, MA, et al. Physiological arousal accompanying postural responses to external perturbations after stroke. Clin Neurophysiol 2017; 128: 935–944.
Google Scholar | Crossref | Medline15. Shan, H, Mason, P. A neuroscience framework for psychophysiology. In: Cacioppo JT, Tassinary LG and Berntson GG (eds) Handbook of psychophysiology. 4th ed. Cambridge: Cambridge University Press, 2017, pp.16–25.
Google Scholar16. Stern, RM, Ray, WJ, Quigley, KS. Psychophysiological recording. USA: Oxford University Press, 2001.
Google Scholar17. Kilpatrick, DG. Differential responsiveness of two electrodermal indices to psychological stress and performance of a complex cognitive task. Psychophysiology 1972; 9: 218–226.
Google Scholar | Crossref | Medline | ISI18. Dawson, M, Schell, A, Filion, D. The electrodermal system. In: Cacioppo JT and Tassinary LG (eds) Principles of psychophysiology: physical, social, and inferential elements. Cambridge: Cambridge University Press, 1990.
Google Scholar19. Nagai, Y, Critchley, HD, Featherstone, E, et al. Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. Neuroimage 2004; 22: 243–251.
Google Scholar | Crossref | Medline | ISI20. Powell, LE, Myers, AM. The activities-specific balance confidence (ABC) scale. J Gerontol Series A: Biol Sci Med Sci 1995; 50A: M28–M34.
Google Scholar | Crossref | Medline | ISI21. Hafner, BJ, Gaunaurd, IA, Morgan, SJ, et al. Construct validity of the prosthetic limb users survey of mobility (plus-M) in adults with lower limb amputation. Arch Phys Med Rehab 2017; 98: 277–285.
Google Scholar | Crossref | Medline22. Amtmann, D, Abrahamson, DC, Morgan, S, et al. The plus-M: item bank of mobility for prosthetic limb users. Qual Life Res 2014; 1: 39–40.
Google Scholar23. Morgan, SJ, Amtmann, D, Abrahamson, DC, et al. Use of cognitive interviews in the development of the plus-M item bank. Qual Life Res 2014; 23: 1767–1775.
Google Scholar | Crossref | Medline | ISI24. Gailey, RS, Roach, KE, Applegate, EB, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate. Arch Phys Med Rehab 2002; 83: 613–27.
Google Scholar | Crossref | Medline | ISI25. Horslen, BC, Carpenter, MG. Arousal, valence and their relative effects on postural control. Exp Brain Res 2011; 215: 27–34.
Google Scholar | Crossref | Medline26. Cleworth, TW, Horslen, BC, Carpenter, MG. Influence of real and virtual heights on standing balance. Gait Posture 2012; 36: 172–176.
Google Scholar | Crossref | Medline27. Hubert, W, de Jong-Meyer, R. Autonomic, neuroendocrine, and subjective responses to emotion-inducing film stimuli. Int J Psychophysiol 1991; 11: 131–140.
Google Scholar | Crossref | Medline | ISI28. Kappeler-Setz, C, Gravenhorst, F, Schumm, J, et al. Towards long term monitoring of electrodermal activity in daily life. Person Ubiquitous Comput 2013; 17: 261–271.
Google Scholar | Crossref29. Greco, A, Valenza, G, Citi, L, et al. Arousal and valence recognition of affective sounds based on electrodermal activity. IEEE Sensors J 2017; 17: 716–725.
Google Scholar | Crossref30. Sokhadze, EM. Effects of music on the recovery of autonomic and electrocortical activity after stress induced by aversive visual stimuli. Appl Psychophysiol Biofeedback 2007; 32: 31–50.
Google Scholar | Crossref | Medline31. Shaffer, F, Combatalade, D, Peper, E, et al. A guide to cleaner electrodermal activity measurements. Biofeedback 2016; 44: 90–100.
Google Scholar | Crossref32. Hugdahl, K. Psychophysiology: the mind-body perspective. Cambridge, MA: Harvard University Press, 1995.
Google Scholar33. Critchley, HD. Electrodermal responses: what happens in the brain. Neuroscientist 2002; 8: 132–142.
Google Scholar | SAGE Journals | ISI34. Boucsein, W, Fowles, DC, Grimnes, S, et al. Society for psychophysiological research ad hoc committee on electrodermal measures. publication recommendations for electrodermal measurements. Psychophysiology 2012; 49: 1017–1034.
Google Scholar | Crossref | Medline | ISI35. Braithwaite, JJ, Watson, DG, Jones, R, et al. A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 2013; 49: 1017–1034.
Google Scholar36. Doberenz, S, Roth, WT, Wollburg, E, et al. Methodological considerations in ambulatory skin conductance monitoring. Int J Psychophysiol 2011; 80: 87–95.
Google Scholar | Crossref | Medline | ISI37. Roberts, LE, Young, R. Electrodermal responses are independent of movement during aversive conditioning in rats, but heart rate is not. J Comparat Physiol Psychol 1971; 77: 495–512
Google Scholar | Crossref | Medline | ISI38. Turpin, G, Shine, P, Lader, M. Ambulatory electrodermal monitoring: effects of ambient temperature, general activity, electrolyte media, and length of recording. Psychophysiology 1983; 20: 219–224
Google Scholar | Crossref | Medline39. Bach, DR, Staib, M. A matching pursuit algorithm for inferring tonic sympathetic arousal from spontaneous skin conductance fluctuations. Psychophysiology 2015; 52: 1106–1112.
Google Scholar | Crossref | Medline40. Hernando-Gallego, F, Luengo, D, Artés-Rodríguez, A. Feature extraction of galvanic skin responses by nonnegative sparse deconvolution. IEEE J Biomed Health Inform 2018; 22: 1385–1394.
Google Scholar | Crossref | Medline41. Greco, A, Valenza, G, Lanata, A, et al. cvxEDA: a convex optimization approach to electrodermal activity processing. IEEE Trans Biomed Eng 2016; 63: 797–804.
Google Scholar | Medline

留言 (0)

沒有登入
gif