Treosulfan-based conditioning for inborn errors of immunity

1. Tangye, SG, Al-Herz, W, Bousfiha, A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2020; 40: 24–64.
Google Scholar | Crossref | Medline2. Fischer, A, Notarangelo, LD, Neven, B, et al. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015; 1: 15061.
Google Scholar | Crossref | Medline3. Gatti, RA, Meuwissen, HJ, Allen, HD, et al. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968; 2: 1366–1369.
Google Scholar | Crossref | Medline | ISI4. De Koning, J, Van Bekkum, DW, Dicke, KA, et al. Transplantation of bone-marrow cells and fetal thymus in an infant with lymphopenic immunological deficiency. Lancet 1969; 293: 1223–1227.
Google Scholar | Crossref5. Bach, FH, Albertini, RJ, Joo, P, et al. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 1968; 2: 1364–1366.
Google Scholar | Crossref | Medline6. Imai, K, Morio, T, Zhu, Y, et al. Clinical course of patients with WASP gene mutations. Blood 2004; 103: 456–464.
Google Scholar | Crossref | Medline | ISI7. Aydin, SE, Kilic, SS, Aytekin, C, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options – a review of 136 patients. J Clin Immunol 2015; 35: 189–198.
Google Scholar | Crossref | Medline8. Winkelstein, JA, Marino, MC, Ochs, H, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore) 2003; 82: 373–384.
Google Scholar | Crossref | Medline | ISI9. Campos, LC, Di Colo, G, Dattani, V, et al. Long-term outcomes for adults with chronic granulomatous disease in the United Kingdom. J Allergy Clin Immunol 2021; 147: 1104–1107.
Google Scholar | Crossref | Medline10. Cole, T, Mckendrick, F, Titman, P, et al. Health related quality of life and emotional health in children with chronic granulomatous disease: a comparison of those managed conservatively with those that have undergone haematopoietic stem cell transplant. J Clin Immunol 2013; 33: 8–13.
Google Scholar | Crossref | Medline11. Fischer, A, Griscelli, C, Friedrich, W, et al. Bone-marrow transplantation for immunodeficiencies and osteopetrosis: European survey, 1968–1985. Lancet 1986; 2: 1080–1084.
Google Scholar | Crossref | Medline12. Fischer, A, Landais, P, Friedrich, W, et al. Bone marrow transplantation (BMT) in Europe for primary immunodeficiencies other than severe combined immunodeficiency: a report from the European group for BMT and the European group for immunodeficiency. Blood 1994; 83: 1149–1154.
Google Scholar | Crossref | Medline13. Fischer, A, Landais, P, Friedrich, W, et al. European experience of bone-marrow transplantation for severe combined immunodeficiency. Lancet 1990; 336: 850–854.
Google Scholar | Crossref | Medline14. Antoine, C, Muller, S, Cant, A, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 2003; 361: 553–560.
Google Scholar | Crossref | Medline15. Gennery, AR, Slatter, MA, Grandin, L, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol 2010; 126: 602–610 e1–11.
Google Scholar | Crossref | Medline16. Brown, L, Xu-Bayford, J, Allwood, Z, et al. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood 2011; 117: 3243–3246.
Google Scholar | Crossref | Medline17. Pai, SY, Logan, BR, Griffith, LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. New Engl J Med 2014; 371: 434–446.
Google Scholar | Crossref | Medline18. Lum, SH, Anderson, C, McNaughton, P, et al. Improved transplant survival and long-term disease outcome in children with MHC class II deficiency. Blood 135: 954–973.
Google Scholar | Crossref | Medline19. Lum, SH, Flood, T, Hambleton, S, et al. Two decades of excellent transplant survival for chronic granulomatous disease: a supraregional immunology transplant center report. Blood 2019; 133: 2546–2549.
Google Scholar | Crossref | Medline20. Gennery, AR, Khawaja, K, Veys, P, et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 2004; 103: 1152–1157.
Google Scholar | Crossref | Medline21. Filipovich, AH, Stone, JV, Tomany, SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001; 97: 1598–1603.
Google Scholar | Crossref | Medline22. Hacein-Bey-Abina, S, Garrigue, A, Wang, GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.
Google Scholar | Crossref | Medline | ISI23. Booth, C, Romano, R, Roncarolo, MG, et al. Gene therapy for primary immunodeficiency. Hum Mol Genet 2019; 28: R15–R23.
Google Scholar | Crossref | Medline24. Aiuti, A, Roncarolo, MG, Naldini, L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 2017: 9:737–9:740.
Google Scholar | Crossref25. Orchard Therapeutics. Orchard statement on Strimvelis®, a gammaretroviral vector-based gene therapy for ADA-SCID , https://ir.orchard-tx.com/news-releases/news-release-details/orchard-statement-strimvelisr-gammaretroviral-vector-based-gene (2020, accessed 23 March 2021).
Google Scholar26. Zhang, ZY, Thrasher, AJ, Zhang, F. Gene therapy and genome editing for primary immunodeficiency diseases. Genes Dis 2020; 7: 38–51.
Google Scholar | Crossref | Medline27. Soncini, E, Slatter, MA, Jones, LB, et al. Unrelated donor and HLA-identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good long-term outcome and growth. Br J Haematol 2009; 145: 73–83.
Google Scholar | Crossref | Medline28. Chiesa, R, Wang, J, Blok, HJ, et al. Haematopoietic cell transplantation in chronic granulomatous disease: a study on 712 children and adults. Blood 2020; 136: 1201–1211.
Google Scholar | Crossref | Medline29. Shah, RM, Elfeky, R, Nademi, Z, et al. T-cell receptor alphabeta(+) and CD19(+) cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J Allergy Clin Immunol 2018; 141: 1417–1426 e1.
Google Scholar | Crossref | Medline30. Schumm, M, Lang, P, Bethge, W, et al. Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy 2013; 15: 1253–1258.
Google Scholar | Crossref | Medline31. Abd Hamid, IJ, Slatter, MA, McKendrick, F, et al. Long-term outcome of hematopoietic stem cell transplantation for IL2RG/JAK3 SCID: a cohort report. Blood 2017; 129: 2198–2201.
Google Scholar | Crossref | Medline32. Abd Hamid, IJ, Slatter, MA, McKendrick, F, et al. Long-term health outcome and quality of life post-HSCT for IL7Ralpha-, Artemis-, RAG1- and RAG2-deficient severe combined immunodeficiency: a single center report. J Clin Immunol 2018; 38: 727–732.
Google Scholar | Crossref | Medline33. Bartelink, IH, Lalmohamed, A, Van Reij, EM, et al. Association of busulfan exposure with survival and toxicity after haemopoietic cell transplantation in children and young adults: a multicentre, retrospective cohort analysis. Lancet Haematol 2016; 3: e526–e536.
Google Scholar | Crossref | Medline34. Bartelink, IH, Van Kesteren, C, Boelens, JJ, et al. Predictive performance of a busulfan pharmacokinetic model in children and young adults. Ther Drug Monit 2012; 34: 574–583.
Google Scholar | Crossref | Medline35. Malar, R, Sjoo, F, Rentsch, K, et al. Therapeutic drug monitoring is essential for intravenous busulfan therapy in pediatric hematopoietic stem cell recipients. Pediatr Transplant 2011; 15: 580–588.
Google Scholar | Medline36. McDonald, GB, Slattery, JT, Bouvier, ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–2048.
Google Scholar | Crossref | Medline | ISI37. Flinn, AM, Roberts, C, Slatter, MA, et al. Thymopoiesis following HSCT; a retrospective review comparing interventions for aGVHD in a paediatric cohort. Clin Immunol 2018; 193: 33–37.
Google Scholar | Crossref | Medline38. Bacigalupo, A, Ballen, K, Rizzo, D, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant 2009; 15: 1628–1633.
Google Scholar | Crossref | Medline | ISI39. Ritchie, DS, Seymour, JF, Roberts, AW, et al. Acute left ventricular failure following melphalan and fludarabine conditioning. Bone Marrow Transplant 2001; 28: 101–103.
Google Scholar | Crossref | Medline40. Straathof, KC, Rao, K, Eyrich, M, et al. Haemopoietic stem-cell transplantation with antibody-based minimal-intensity conditioning: a phase 1/2 study. Lancet 2009; 374: 912–920.
Google Scholar | Crossref | Medline | ISI41. Danylesko, I, Shimoni, A, Nagler, A. Treosulfan-based conditioning before hematopoietic SCT: more than a BU look-alike. Bone Marrow Transplant 2012; 47: 5–14.
Google Scholar | Crossref | Medline42. Slack, J, Albert, MH, Balashov, D, et al. Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. J Allergy Clin Immunol 2018; 141: 322–328. e10.
Google Scholar | Crossref | Medline43. Feit, PW, Rastrup-Andersen, N, Matagne, R. Studies on epoxide formation from (2S,3S)-threitol 1,4-bismethanesulfonate. The preparation and biological activity of (2S,3S)-1,2-epoxy-3,4-butanediol 4-methanesulfonate. J Med Chem 1970; 13: 1173–1175.
Google Scholar | Crossref | Medline44. Masding, J, Sarkar, TK, White, WF, et al. Intravenous treosulfan versus intravenous treosulfan plus cisplatinum in advanced ovarian carcinoma. Br J Obstet Gynaecol 1990; 97: 342–351.
Google Scholar | Crossref | Medline45. Gropp, M, Meier, W, Hepp, H. Treosulfan as an effective second-line therapy in ovarian cancer. Gynecol Oncol 1998; 71: 94–98.
Google Scholar | Crossref | Medline46. Neuber, K, Tom Dieck, A, Blodorn-Schlicht, N, et al. Treosulfan is an effective alkylating cytostatic for malignant melanoma in vitro and in vivo. Melanoma Res 1999; 9: 125–132.
Google Scholar | Crossref | Medline47. Kopf-Maier, P, Sass, G. Antitumor activity of treosulfan against human breast carcinomas. Cancer Chemother Pharmacol 1992; 31: 103–110.
Google Scholar | Crossref | Medline48. Fichtner, I, Becker, M, Baumgart, J. Antileukaemic activity of treosulfan in xenografted human acute lymphoblastic leukaemias (ALL). Eur J Cancer 2003; 39: 801–807.
Google Scholar |

Comments (0)

No login
gif