Placebo and nocebo effects in youth: subjective thermal discomfort can be modulated by a conditioning paradigm utilizing mental states of low and high self-efficacy

1. Jensen, K, Kaptchuk, T, Kirsch, I, et al. Nonconscious activation of placebo and nocebo pain responses. Proc Natl Acad Sci U S A 2012; 109: 15959–15964.
Google Scholar | Crossref | Medline2. Jepma, M, Wager, TD. Conceptual conditioning: mechanisms mediating conditioning effects on pain. Psychol Sci 2015; 26: 1728–1739.
Google Scholar | SAGE Journals | ISI3. Krummenacher, P, Kossowsky, J, Schwarz, C, et al. Expectancy-induced placebo analgesia in children and the role of magical thinking. J Pain 2014; 15(12): 1282–1293.
Google Scholar | Crossref | Medline4. Carlino, E, Torta, DME, Piedimonte, A, et al. Role of explicit verbal information in conditioned analgesia. Eur J Pain 2015; 19(4): 546–553.
Google Scholar | Crossref | Medline5. Piedimonte, A, Guerra, G, Vighetti, S, et al. Measuring expectation of pain: contingent negative variation in placebo and nocebo effects. Eur J Pain 2017; 21(5): 874–885.
Google Scholar | Crossref | Medline6. Carlino, E, Guerra, G, Piedimonte, A. Placebo effects: from pain to motor performance. Neurosci Lett 2016; 632: 224–230.
Google Scholar | Crossref | Medline7. Weimer, K, Gulewitsch, MD, Schlarb, AA, et al. Placebo effects in children: a review. Pediatr Res 2013; 74: 96–102.
Google Scholar | Crossref | Medline8. Burnett, S, Blakemore, SJ. The development of adolescent social cognition. Ann N Y Acad Sci 2009; 1167: 51–56.
Google Scholar | Crossref | Medline9. Lamblin, M, Murawski, C, Whittle, S, et al. Social connectedness, mental health and the adolescent brain. Neurosci Biobehav Rev 2017; 80: 57–68.
Google Scholar | Crossref | Medline10. Sebastian, C, Viding, E, Williams, KD, et al. Social brain development and the affective consequences of ostracism in adolescence. Brain Cogn 2010; 72(1): 134–145.
Google Scholar | Crossref | Medline | ISI11. Wager, TD, Atlas, LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci 2015; 16(7): 403–418.
Google Scholar | Crossref | Medline12. Jensen, K, Kaptchuk, T, Chen, X, et al. A neural mechanism for nonconscious activation of conditioned placebo and nocebo responses. Cereb Cortex 2015; 25(10): 3903–3910.
Google Scholar | Crossref | Medline13. Bąbel, P, Bajcar, EA, Adamczyk, W, et al. Classical conditioning without verbal suggestions elicits placebo analgesia and nocebo hyperalgesia. PLoS ONE 2017; 12(7): e0181856.
Google Scholar | Crossref | Medline14. Miguez, G, Laborda, MA, Miller, RR. Classical conditioning and pain: conditioned analgesia and hyperalgesia. Acta Psychol 2014; 145: 10–20.
Google Scholar | Crossref | Medline15. Madden, VJ, Bellan, V, Russek, LN, et al. Pain by association? Experimental modulation of human pain thresholds using classical conditioning. J Pain 2016; 17(10): 1105–1115.
Google Scholar | Crossref | Medline16. Jensen, K, Kirsch, I, Odmalm, S, et al. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc Natl Acad Sci U S A 2015; 112: 7863–7867.
Google Scholar | Crossref | Medline17. Wrobel, N, Fadai, T, Sprenger, C, et al. Are children the better placebo analgesia responders? An experimental approach. J Pain 2015; 16(10): 1005–1011.
Google Scholar | Crossref | Medline18. Gniß, S, Kappesser, J, Hermann, C. Placebo effect in children: the role of expectation and learning. Pain 2020; 161: 1191–1201.
Google Scholar | Crossref | Medline19. Neuenschwander, R, Weik, E, Tipper, CM, et al. Conditioned placebo- and nocebo-like effects in adolescents: the role of conscious awareness, sensory discrimination, and executive function. Front Psychiatry 2020; 11: 586455.
Google Scholar | Crossref | Medline20. Bandura, A. Self-efficacy mechanism in human agency. Am Psychol 1982; 37: 122–147.
Google Scholar | Crossref | ISI21. Vancleef, LMG, Peters, ML. The influence of perceived control and self-efficacy on the sensory evaluation of experimentally induced pain. J Behav Ther Exp Psychiatry 2011; 42(4): 511–517.
Google Scholar | Crossref | Medline22. Staats, PS, Staats, A, Hekmat, H. The additive impact of anxiety and a placebo on pain. Pain Med 2001; 2(4): 267–279.
Google Scholar | Crossref | Medline23. Corsi, N, Colloca, L. Placebo and nocebo effects: the advantage of measuring expectations and psychological factors. Front Psychol 2017; 8: 308.
Google Scholar | Crossref | Medline24. Geers, AL, Kosbab, K, Helfer, SG, et al. Further evidence for individual differences in placebo responding: an interactionist perspective. J Psychosom Res 2007; 62(5): 563–570.
Google Scholar | Crossref | Medline25. Snyder, CR, Berg, C, Woodward, JT, et al. Hope against the cold: individual differences in trait hope and acute pain tolerance on the cold pressor task. J Pers 2005; 73(2): 287–312.
Google Scholar | Crossref26. Pulvers, K, Hood, A. The role of positive traits and pain catastrophizing in pain perception. Curr Pain Headache Rep 2013; 17(5): 330.
Google Scholar | Crossref | Medline27. Faul, F, Erdfelder, E, Lang, AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39(2): 175–191.
Google Scholar | Crossref | Medline | ISI28. Schwarzer, R, Jerusalem, M. Causal and control beliefs. In: Wright, S, Johnston, M (eds) Measures in health psychology: a user’s portfolio. Windsor: NFER-Nelson, 1995, pp. 35–37.
Google Scholar29. Spielberger, CD, Gorsuch, RL, Lushene, R, et al. Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press, 1983.
Google Scholar30. Snyder, CR, Harris, C, Anderson, JR, et al. The will and the ways: development and validation of an individual-differences measure of hope. J Pers Soc Psychol 1991; 60(4): 570–585.
Google Scholar | Crossref | Medline | ISI31. R Core Team . R: a language and environment for statistical computing, 2019, https://www.r-project.org/
Google Scholar32. Lawrence, MA. ez: easy analysis and visualization of factorial experiments, 2016, https://cran.r-project.org/package=ez
Google Scholar33. Wickham, H. ggplot2: elegant graphics for data analysis, 2016, https://ggplot2.tidyverse.org
Google Scholar34. Cousineau, D. Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutor Quant Methods Psychol 2005; 1: 42–45.
Google Scholar | Crossref35. Thillay, A, Roux, S, Gissot, V, et al. Sustained attention and prediction: distinct brain maturation trajectories during adolescence. Front Hum Neurosci 2015; 9: 519.
Google Scholar | Crossref | Medline36. Lau, JY, Britton, JC, Nelson, EE, et al. Distinct neural signatures of threat learning in adolescents and adults. Proc Natl Acad Sci U S A 2011; 108: 4500–4505.
Google Scholar | Crossref | Medline | ISI37. Colloca, L, Petrovic, P, Wager, TD, et al. How the number of learning trials affects placebo and nocebo responses. Pain 2010; 151(2): 430–439.
Google Scholar | Crossref | Medline38. Egorova, N, Park, J, Kong, J. In the face of pain: the choice of visual cues in pain conditioning matters. Eur J Pain 2017; 21(7): 1243–1251.
Google Scholar | Crossref | Medline39. Schweinhardt, P, Bushnell, MC. Pain imaging in health and disease–how far have we come? J Clin Invest 2010; 120(11): 3788–3797.
Google Scholar | Crossref | Medline40. Rhudy, JL, Bartley, EJ, Williams, AE. Habituation, sensitization, and emotional valence modulation of pain responses. Pain 2010; 148(2): 320–327.
Google Scholar | Crossref | Medline41. Valentini, E, Martini, M, Lee, M, et al. Seeing facial expressions enhances placebo analgesia. Pain 2014; 155(4): 666–673.
Google Scholar | Crossref | Medline42. Williams, AE, Rhudy, JL. The influence of conditioned fear on human pain thresholds: does preparedness play a role? J Pain 2007; 8: 598–606.
Google Scholar | Crossref | Medline43. Öhman, A, Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol Rev 2001; 108(3): 483–522.
Google Scholar | Crossref | Medline | ISI44. Benedetti, F, Amanzio, M, Vighetti, S, et al. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci 2006; 26: 12014–12022.
Google Scholar | Crossref | Medline | ISI45. Benedetti, F, Amanzio, M, Casadio, C, et al. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 1997; 71(2): 135–140.
Google Scholar | Crossref | Medline46. Colloca, L, Benedetti, F. Nocebo hyperalgesia: how anxiety is turned into pain. Curr Opin Anaesthesiol 2007; 20(5): 435–439.
Google Scholar | Crossref | Medline | ISI47. Rotzinger, S, Vaccarino, FJ. Cholecystokinin receptor subtypes: role in the modulation of anxiety-related and reward-related behaviours in animal models. J Psychiatry Neurosci 2003; 28(3): 171–181.
Google Scholar | Medline48. Colagiuri, B, Quinn, VF. Autonomic arousal as a mechanism of the persistence of nocebo hyperalgesia. J Pain 2018; 19(5): 476–486.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif