Change in Practice of Radioactive Iodine Administration in Differentiated Thyroid Cancer: A Single-Centre Experience

Clinical Thyroidology / Research Article

Wijewardene A.a,b· Gild M.a,b· Nylén C.c· Schembri G.b,d· Roach P.b,d· Hoang J.b,d· Aniss A.c· Glover A.b,c· Sywak M.b,c· Sidhu S.b,c· Learoyd D.b· Robinson B.a,b· Tacon L.a,b· Clifton-Bligh R.a,b

Author affiliations

aDepartment of Endocrinology, Royal North Shore Hospital, Sydney, NSW, Australia
bFaculty of Medicine, University of Sydney, Sydney, NSW, Australia
cEndocrine Surgery Department, Royal North Shore Hospital, Sydney, NSW, Australia
dNuclear Medicine Department, Royal North Shore Hospital, Sydney, NSW, Australia

Log in to MyKarger to check if you already have access to this title.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent/Cloud Rent for 48h to view Buy Cloud Access for unlimited viewing via different devices Synchronizing in the ReadCube Cloud Printing and saving restrictions apply Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview

Abstract of Clinical Thyroidology / Research Article

Received: February 12, 2021
Accepted: March 31, 2021
Published online: May 25, 2021

Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 2

ISSN: 2235-0640 (Print)
eISSN: 2235-0802 (Online)

For additional information: https://www.karger.com/ETJ

Abstract

Objective: Our study aimed to analyse temporal trends in radioactive iodine (RAI) treatment for thyroid cancer over the past decade; to analyse key factors associated with clinical decisions in RAI dosing; and to confirm lower activities of RAI for low-risk patients were not associated with an increased risk of recurrence. Methods: Retrospective analysis of 1,323 patients who received RAI at a quaternary centre in Australia between 2008 and 2018 was performed. Prospectively collected data included age, gender, histology, and American Joint Committee on Cancer stage (7th ed). American Thyroid Association risk was calculated retrospectively. Results: The median activities of RAI administered to low-risk patients decreased from 3.85 GBq (104 mCi) in 2008–2016 to 2.0 GBq (54 mCi) in 2017–2018. The principal driver of this change was an increased use of 1 GBq (27 mCi) from 1.3% of prescriptions in 2008–2011 to 18.5% in 2017–2018. In patients assigned as low risk per ATA stratification, lower activities of 1 GBq or 2 GBq (27 mCi or 54 mCi) were not associated with an increased risk of recurrence. In patients assigned to intermediate- or high-risk categories who received RAI as adjuvant therapy, there was no difference in risk of recurrence between 4 GBq (108 mCi) and 6 GBq (162 mCi). Conclusions: Our data demonstrate an evolution of RAI activities consistent with translation of ATA guidelines into clinical practice. Use of lower RAI activities was not associated with an increase in recurrence in low-risk thyroid cancer patients. Our data also suggest lower RAI activities may be as efficacious for adjuvant therapy in intermediate- and high-risk patients.

© 2021 European Thyroid Association Published by S. Karger AG, Basel

References Deng Y, Li H, Wang M, Li N, Tian T, Wu Y, et al. Global burden of thyroid cancer from 1990 to 2017. JAMA Netw Open. 2020;3(6):e208759. Australian Institute of Health and Welfare. Cancer Incidence Projections Australia 2011–2020 Cancer Series 66. Available from: http://www.aihw.gov.au/WorkArea/DownloadAsset.aspx?id=10737421440. Accessed 2019 Jun. Pandeya N, McLeod DS, Balasubramaniam K, Baade PD, Youl PH, Bain CJ, et al. Increasing thyroid cancer incidence in Queensland, Australia 1982–2008: true increase or overdiagnosis? Clin Endocrinol. 2016;84(2):257–64. Sherman SI. Thyroid carcinoma. Lancet. 2003;361(9356):501–11. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366(18):1663–73. Schlumberger M, Leboulleux S, Catargi B, Deandreis D, Zerdoud S, Bardet S, et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol. 2018;6(8):618–26. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366(18):1674–85. Dehbi HM, Mallick U, Wadsley J, Newbold K, Harmer C, Hackshaw A. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): long-term results of an open-label, non-inferiority randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(1):44–51. Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16(12):1229–42. Carhill AA, Litofsky DR, Ross DS, Jonklaas J, Cooper DS, Brierley JD, et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987–2012. J Clin Endocrinol Metab. 2015;100(9):3270–9. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44. Tuttle RM. Distinguishing remnant ablation from adjuvant treatment in differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2019;7(1):7–8. Radowsky JS, Howard RS, Burch HB, Stojadinovic A. Impact of degree of extrathyroidal extension of disease on papillary thyroid cancer outcome. Thyroid. 2014;24(2):241–4. Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22(11):1144–52. O’Neill CJ, Vaughan L, Learoyd DL, Sidhu SB, Delbridge LW, Sywak MS. Management of follicular thyroid carcinoma should be individualised based on degree of capsular and vascular invasion. Eur J Surg Oncol. 2011;37(2):181–5. Heemstra KA, Liu YY, Stokkel M, Kievit J, Corssmit E, Pereira AM, et al. Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol. 2007;66(1):58–64. Robenshtok E, Grewal RK, Fish S, Sabra M, Tuttle RM. A low postoperative nonstimulated serum thyroglobulin level does not exclude the presence of radioactive iodine avid metastatic foci in intermediate-risk differentiated thyroid cancer patients. Thyroid. 2013;23(4):436–42. Ito Y, Kudo T, Kihara M, Takamura Y, Kobayashi K, Miya A, et al. Prognosis of low-risk papillary thyroid carcinoma patients: its relationship with the size of primary tumors. Endocr J. 2012;59(2):119–25. Ryerson Index [updated 2020 Oct 15]. Available from: http://ryersonindex.org/search.php. Jacobs D, Breen CT, Pucar D, Holt E, Judson BL, Mehra S. Changes in population-level and institutional-level prescribing habits of radioiodine therapy for papillary thyroid cancer. Thyroid. 2021 Feb;31(2):272–9. Vardarli I, Weidemann F, Aboukoura M, Herrmann K, Binse I, Görges R. Longer-term recurrence rate after low versus high dose radioiodine ablation for differentiated thyroid cancer in low and intermediate risk patients: a meta-analysis. BMC Cancer. 2020;20(1):550. Al-Qurayshi Z, Bu Ali D, Srivastav S, Kandil E. Financial implication of radioactive iodine therapy for early-stage papillary thyroid cancer. Oncology. 2017;93(2):122–6. Verburg FA, Aktolun C, Chiti A, Frangos S, Giovanella L, Hoffmann M, et al. Why the European Association of nuclear medicine has declined to endorse the 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2016;43(6):1001–5. Tuttle RM, Ahuja S, Avram AM, Bernet VJ, Bourguet P, Daniels GH, et al. Controversies, Consensus, and Collaboration in the Use of (131)I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of nuclear medicine, the society of nuclear medicine and molecular imaging, and the European Thyroid Association. Thyroid. 2019;29(4):461–70. Sawka AM, Goldstein DP, Thabane L, Brierley JD, Tsang RW, Rotstein L, et al. Basis for physician recommendations for adjuvant radioiodine therapy in early-stage thyroid carcinoma: principal findings of the Canadian-American thyroid cancer survey. Endocr Pract. 2008;14(2):175–84. Verburg FA, Ahuja S, Avram AM, Bardiès M, Bernet V, Bourguet P, et al. Brief progress report from the intersocietal working group on differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2020;47(6):1345–7. Gray KD, Bannani S, Caillard C, Amanat S, Ullmann TM, Romanov P, et al. High-dose radioactive iodine therapy is associated with decreased risk of recurrence in high-risk papillary thyroid cancer. Surgery. 2019;165(1):37–43. Ruel E, Thomas S, Dinan M, Perkins JM, Roman SA, Sosa JA. Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab. 2015;100(4):1529–36. Castagna MG, Cevenini G, Theodoropoulou A, Maino F, Memmo S, Claudia C, et al. Post-surgical thyroid ablation with low or high radioiodine activities results in similar outcomes in intermediate risk differentiated thyroid cancer patients. Eur J Endocrinol. 2013;169(1):23–9. Sabra MM, Grewal RK, Ghossein RA, Tuttle RM. Higher administered activities of radioactive iodine are associated with less structural persistent response in older, but not younger, papillary thyroid cancer patients with lateral neck lymph node metastases. Thyroid. 2014;24(7):1088–95. Han JM, Kim WG, Kim TY, Jeon MJ, Ryu JS, Song DE, et al. Effects of low-dose and high-dose postoperative radioiodine therapy on the clinical outcome in patients with small differentiated thyroid cancer having microscopic extrathyroidal extension. Thyroid. 2014;24(5):820–5. Grani G, Zatelli MC, Alfò M, Montesano T, Torlontano M, Morelli S, et al. Real-world performance of the American thyroid association risk estimates in predicting 1-year differentiated thyroid cancer outcomes: a prospective multicenter study of 2000 patients. Thyroid. 2021 Feb;31(2):264–71. de Rosário PW, Guimarães VC, Maia FF, Fagundes TA, Purisch S, Padrao EL, et al. Thyroglobulin before ablation and correlation with posttreatment scanning. Laryngoscope. 2005;115(2):264–7. Article / Publication Details

First-Page Preview

Abstract of Clinical Thyroidology / Research Article

Received: February 12, 2021
Accepted: March 31, 2021
Published online: May 25, 2021

Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 2

ISSN: 2235-0640 (Print)
eISSN: 2235-0802 (Online)

For additional information: https://www.karger.com/ETJ

Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Comments (0)

No login
gif