Human Cytomegalovirus-Induced Immune Tolerance in Glioma

Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15:422–42. https://doi.org/10.1038/s41571-018-0003-5.

Article  PubMed  CAS  Google Scholar 

Cobbs C, Harkins L, Samanta M, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50.

PubMed  CAS  Google Scholar 

Patro ARK. Subversion of immune response by human cytomegalovirus. Front Immunol. 2019;10:1155. https://doi.org/10.3389/fimmu.2019.01155.

Article  PubMed  PubMed Central  CAS  Google Scholar 

El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From “Canonical” Diseases Toward Virus-Elicited Oncomodulation. Front Immunol. 2021;12:730765. https://doi.org/10.3389/fimmu.2021.730765.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Coletti R, Mendonça ML, Vinga S, Lopes MB (2023) Inferring diagnostic and prognostic gene expression signatures across WHO glioma classifications: A network-based approach

Boots-Sprenger SHE, Sijben A, Rijntjes J, et al. Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution. Mod Pathol. 2013;26:922–9. https://doi.org/10.1038/modpathol.2012.166.

Article  PubMed  CAS  Google Scholar 

Rubiano EGO, Baldoncini M, Cómbita AL, et al. Understanding the molecular profiling of diffuse gliomas classification: a brief overview. Surg Neurol Int. 2023;14:225. https://doi.org/10.25259/SNI_209_2023.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Zhou F, Ali H, et al. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol. 2024;21:1354–75. https://doi.org/10.1038/s41423-024-01226-x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol. 2024;15:1355242. https://doi.org/10.3389/fphar.2024.1355242.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26:78. https://doi.org/10.1186/s12929-019-0568-z.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ooi YC, Tran P, Ung N, et al. The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg. 2014;119:125–32. https://doi.org/10.1016/j.clineuro.2013.12.004.

Article  PubMed  Google Scholar 

Li K, Shi H, Zhang B, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Sig Transduct Target Ther. 2021;6:362. https://doi.org/10.1038/s41392-021-00670-9.

Article  Google Scholar 

Tie Y, Tang F, Wei Y, Wei X. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15:61. https://doi.org/10.1186/s13045-022-01282-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yuan Q, Fan Z, Huang W, et al. Human cytomegalovirus UL23 exploits PD-L1 inhibitory signaling pathway to evade T cell-mediated cytotoxicity. MBio. 2024;15:e01191-24. https://doi.org/10.1128/mbio.01191-24.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tovar-Salazar A, Weinberg A. Understanding the mechanism of action of cytomegalovirus-induced regulatory T cells. Virology. 2020;547:1–6. https://doi.org/10.1016/j.virol.2020.05.001.

Article  PubMed  CAS  Google Scholar 

Kaur B, Khwaja FW, Severson EA, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth andangiogenesis. Neuro-oncol. 2005;7:134–53. https://doi.org/10.1215/S1152851704001115.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shurin MR, Umansky V. Cross-talk between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy. J Clin Invest. 2022;132:e159473. https://doi.org/10.1172/JCI159473.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 2023;41:421–33. https://doi.org/10.1016/j.ccell.2023.01.009.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hosseinalizadeh H, Mahmoodpour M, Samadani AA, Roudkenar MH. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies. Med Oncol. 2022;39:130. https://doi.org/10.1007/s12032-022-01724-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin H, Liu C, Hu A, et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol. 2024;17:31. https://doi.org/10.1186/s13045-024-01544-7.

Article  PubMed  PubMed Central  Google Scholar 

Himes BT, Geiger PA, Ayasoufi K, et al. Immunosuppression in glioblastoma: current understanding and therapeutic implications. Front Oncol. 2021;11:770561. https://doi.org/10.3389/fonc.2021.770561.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): a multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther. 2022;233:108024. https://doi.org/10.1016/j.pharmthera.2021.108024.

Article  PubMed  CAS  Google Scholar 

Lamano JB, Lamano JB, Li YD, et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin Cancer Res. 2019;25:3643–57. https://doi.org/10.1158/1078-0432.CCR-18-2402.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cobbs C. Cytomegalovirus is a tumor-associated virus: armed and dangerous. Curr Opin Virol. 2019;39:49–59. https://doi.org/10.1016/j.coviro.2019.08.003.

Article  PubMed  Google Scholar 

Herbein G. High-risk oncogenic human cytomegalovirus. Viruses. 2022;14:2462. https://doi.org/10.3390/v14112462.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Herbein G. The human cytomegalovirus, from oncomodulation to oncogenesis. Viruses. 2018;10:408. https://doi.org/10.3390/v10080408.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cobbs CS, Soroceanu L, Denham S, et al. Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1–mediated mitogenicity. Cancer Res. 2008;68:724–30. https://doi.org/10.1158/0008-5472.CAN-07-2291.

Article  PubMed  CAS  Google Scholar 

Lucas KG, Bao L, Bruggeman R, et al. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol. 2011;103:231–8. https://doi.org/10.1007/s11060-010-0383-6.

Article  PubMed  CAS  Google Scholar 

Rahbar A, Orrego A, Peredo I, et al. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival.

Comments (0)

No login
gif