Fungal Pathogenesis and Virulence in the Anthropocene: Multidimensional Impacts of Climate Change

Fourie JBJ. Remarques générales sur les températures du globe terrestre et des espaces planétaires. Annales de Chimie et de Physique. 1824;27:136–67.

Google Scholar 

Tyndall J. On the absorption and radiation of heat by gases and vapours. Philos Trans R Soc Lond. 1861;151:1–36. https://doi.org/10.1098/rstl.1861.0001.

Article  Google Scholar 

Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci. 1896;41:237–76.

Article  CAS  Google Scholar 

Plato (1926) Cratylus. Parmenides. Greater Hippias. Lesser Hippias, 1st ed. Harvard University Press, Cambridge

Leopold A. A Sand County Almanac and Sketches Here and There, 2nd. A., New York, NY: Oxford University Press, U.S; 1968.

Google Scholar 

Francis P (2015) Laudato si´: On care for our common home. Vatican Press 1–184

Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021;17:e1009503–e1009503. https://doi.org/10.1371/journal.ppat.1009503.

Article  CAS  Google Scholar 

Seidel D, Wurster S, Jenks JD, et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe. 2024;5:e594–605. https://doi.org/10.1016/S2666-5247(24)00039-9.

Article  CAS  PubMed  Google Scholar 

Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. MBio. 2010. https://doi.org/10.1128/mBio.00061-10.

Article  PubMed  PubMed Central  Google Scholar 

Cavicchioli R, Ripple WJ, Timmis KN, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86. https://doi.org/10.1038/s41579-019-0222-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casadevall A (2020) The Journal of Clinical Investigation Climate change brings the specter of new infectious diseases. 130: https://doi.org/10.1172/JCI135003

Forsberg K, Woodworth K, Walters M, et al. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019;57:1–12. https://doi.org/10.1093/MMY/MYY054.

Article  PubMed  Google Scholar 

Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. MBio. 2019. https://doi.org/10.1128/mBio.01397-19.

Article  PubMed  PubMed Central  Google Scholar 

Bebber DP, Ramotowski MAT, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang. 2013;3:985–8. https://doi.org/10.1038/nclimate1990.

Article  Google Scholar 

Almeida F, Rodrigues ML, Coelho C. The still underestimated problem of fungal diseases worldwide. Front Microbiol. 2019;10:214–6. https://doi.org/10.3389/fmicb.2019.00214.

Article  PubMed  PubMed Central  Google Scholar 

Simões D, de Andrade E, Sabino R. Fungi in a one health perspective. Encyclopedia. 2023;3:900–18. https://doi.org/10.3390/encyclopedia3030064.

Article  Google Scholar 

Guo Y, Jud W, Weikl F, et al. Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol. 2021;4:673. https://doi.org/10.1038/s42003-021-02198-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci. 2017;8:102. https://doi.org/10.3389/fpls.2017.00102.

Article  PubMed  PubMed Central  Google Scholar 

Müller A, Faubert P, Hagen M, et al. Volatile profiles of fungi – chemotyping of species and ecological functions. Fungal Genet Biol. 2013;54:25–33. https://doi.org/10.1016/j.fgb.2013.02.005.

Article  CAS  PubMed  Google Scholar 

Feng Y, Li D, Gong D, et al. Enhanced beneficial lipids and volatile compounds in Jersey ghee attributed by key microbiota. Food Chem. 2025;468:142393. https://doi.org/10.1016/j.foodchem.2024.142393.

Article  CAS  PubMed  Google Scholar 

Huang Y, Zhao Y, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ Pollut. 2019;254:112983. https://doi.org/10.1016/j.envpol.2019.112983.

Article  CAS  PubMed  Google Scholar 

Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, et al. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus. 2022;13:6. https://doi.org/10.1186/s43008-022-00092-4.

Article  PubMed  PubMed Central  Google Scholar 

Blande JD, Holopainen JK, Niinemets U. Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ. 2014;37:1892–904. https://doi.org/10.1111/pce.12352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruisson S, Alfiky A, L’Haridon F, Weisskopf L (2023) A new system to study directional volatile-mediated interactions reveals the ability of fungi to specifically react to other fungal volatiles. Front Ecol Evol 11: https://doi.org/10.3389/fevo.2023.1128514

Raczka NC, Piñeiro J, Tfaily MM, et al. Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil. Sci Rep. 2021;11:19320. https://doi.org/10.1038/s41598-021-97942-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mudbhari S, Lofgren L, Appidi MR, et al. Decoding the chemical language of Suillus fungi: genome mining and untargeted metabolomics uncover terpene chemical diversity. mSystems. 2024. https://doi.org/10.1128/msystems.01225-23.

Article  PubMed  PubMed Central  Google Scholar 

Védère C, Vieublé Gonod L, Nunan N, Chenu C. Opportunities and limits in imaging microorganisms and their activities in soil microhabitats. Soil Biol Biochem. 2022;174:108807. https://doi.org/10.1016/j.soilbio.2022.108807.

Article  CAS  Google Scholar 

Tian F, Lee SY, Woo SY, et al. Transcriptomic responses of Aspergillus flavus to temperature and oxidative stresses during aflatoxin production. Sci Rep. 2021;11:2803. https://doi.org/10.1038/s41598-021-82488-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baazeem A, Rodriguez A, Medina A, Magan N. Impacts of climate change interacting abiotic factors on growth, aflD and aflR gene expression and aflatoxin B1 production by Aspergillus flavus strains in vitro and on pistachio nuts. Toxins (Basel). 2021. https://doi.org/10.3390/toxins13060385.

Article  PubMed  Google Scholar 

Tumukunde E, Xie R, Wang S. Updates on the functions and molecular mechanisms of the genes involved in Aspergillus flavus development and biosynthesis of aflatoxins. J Fungi. 2021;7(8):666. https://doi.org/10.3390/jof7080666.

Article  CAS  Google Scholar 

Ding C, Tian T, Liu Q, et al. Transcriptomics and metabolomic profiling identify molecular mechanism for Aspergillus flavus infection in grain. Food Front. 2023;4:1845–58. https://doi.org/10.1002/fft2.303.

Article  CAS  Google Scholar 

Casu A, Camardo Leggieri M, Toscano P, Battilani P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Compr Rev Food Sci Food Saf. 2024. https://doi.org/10.1111/1541-4337.13323.

Article  PubMed  Google Scholar 

Zhao P, Gu S, Han C, et al. Targeted and untargeted metabolomics profiling of wheat reveals amino acids increase resistance to Fusarium head blight. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.762605.

Article  PubMed  PubMed Central  Google Scholar 

Westphal KR, Bachleitner S, Severinsen MM, et al. Cyclic, hydrophobic hexapeptide fusahexin is the product of a nonribosomal peptide synthetase in Fusarium graminearum. J Nat Prod. 2021;84:2070–80. https://doi.org/10.1021/acs.jnatprod.0c00947.

Article  CAS  PubMed  Google Scholar 

Whit

Comments (0)

No login
gif