Fourie JBJ. Remarques générales sur les températures du globe terrestre et des espaces planétaires. Annales de Chimie et de Physique. 1824;27:136–67.
Tyndall J. On the absorption and radiation of heat by gases and vapours. Philos Trans R Soc Lond. 1861;151:1–36. https://doi.org/10.1098/rstl.1861.0001.
Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci. 1896;41:237–76.
Plato (1926) Cratylus. Parmenides. Greater Hippias. Lesser Hippias, 1st ed. Harvard University Press, Cambridge
Leopold A. A Sand County Almanac and Sketches Here and There, 2nd. A., New York, NY: Oxford University Press, U.S; 1968.
Francis P (2015) Laudato si´: On care for our common home. Vatican Press 1–184
Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021;17:e1009503–e1009503. https://doi.org/10.1371/journal.ppat.1009503.
Seidel D, Wurster S, Jenks JD, et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe. 2024;5:e594–605. https://doi.org/10.1016/S2666-5247(24)00039-9.
Article CAS PubMed Google Scholar
Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. MBio. 2010. https://doi.org/10.1128/mBio.00061-10.
Article PubMed PubMed Central Google Scholar
Cavicchioli R, Ripple WJ, Timmis KN, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86. https://doi.org/10.1038/s41579-019-0222-5.
Article CAS PubMed PubMed Central Google Scholar
Casadevall A (2020) The Journal of Clinical Investigation Climate change brings the specter of new infectious diseases. 130: https://doi.org/10.1172/JCI135003
Forsberg K, Woodworth K, Walters M, et al. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019;57:1–12. https://doi.org/10.1093/MMY/MYY054.
Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. MBio. 2019. https://doi.org/10.1128/mBio.01397-19.
Article PubMed PubMed Central Google Scholar
Bebber DP, Ramotowski MAT, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang. 2013;3:985–8. https://doi.org/10.1038/nclimate1990.
Almeida F, Rodrigues ML, Coelho C. The still underestimated problem of fungal diseases worldwide. Front Microbiol. 2019;10:214–6. https://doi.org/10.3389/fmicb.2019.00214.
Article PubMed PubMed Central Google Scholar
Simões D, de Andrade E, Sabino R. Fungi in a one health perspective. Encyclopedia. 2023;3:900–18. https://doi.org/10.3390/encyclopedia3030064.
Guo Y, Jud W, Weikl F, et al. Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol. 2021;4:673. https://doi.org/10.1038/s42003-021-02198-8.
Article CAS PubMed PubMed Central Google Scholar
Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci. 2017;8:102. https://doi.org/10.3389/fpls.2017.00102.
Article PubMed PubMed Central Google Scholar
Müller A, Faubert P, Hagen M, et al. Volatile profiles of fungi – chemotyping of species and ecological functions. Fungal Genet Biol. 2013;54:25–33. https://doi.org/10.1016/j.fgb.2013.02.005.
Article CAS PubMed Google Scholar
Feng Y, Li D, Gong D, et al. Enhanced beneficial lipids and volatile compounds in Jersey ghee attributed by key microbiota. Food Chem. 2025;468:142393. https://doi.org/10.1016/j.foodchem.2024.142393.
Article CAS PubMed Google Scholar
Huang Y, Zhao Y, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ Pollut. 2019;254:112983. https://doi.org/10.1016/j.envpol.2019.112983.
Article CAS PubMed Google Scholar
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, et al. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus. 2022;13:6. https://doi.org/10.1186/s43008-022-00092-4.
Article PubMed PubMed Central Google Scholar
Blande JD, Holopainen JK, Niinemets U. Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ. 2014;37:1892–904. https://doi.org/10.1111/pce.12352.
Article CAS PubMed PubMed Central Google Scholar
Bruisson S, Alfiky A, L’Haridon F, Weisskopf L (2023) A new system to study directional volatile-mediated interactions reveals the ability of fungi to specifically react to other fungal volatiles. Front Ecol Evol 11: https://doi.org/10.3389/fevo.2023.1128514
Raczka NC, Piñeiro J, Tfaily MM, et al. Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil. Sci Rep. 2021;11:19320. https://doi.org/10.1038/s41598-021-97942-9.
Article CAS PubMed PubMed Central Google Scholar
Mudbhari S, Lofgren L, Appidi MR, et al. Decoding the chemical language of Suillus fungi: genome mining and untargeted metabolomics uncover terpene chemical diversity. mSystems. 2024. https://doi.org/10.1128/msystems.01225-23.
Article PubMed PubMed Central Google Scholar
Védère C, Vieublé Gonod L, Nunan N, Chenu C. Opportunities and limits in imaging microorganisms and their activities in soil microhabitats. Soil Biol Biochem. 2022;174:108807. https://doi.org/10.1016/j.soilbio.2022.108807.
Tian F, Lee SY, Woo SY, et al. Transcriptomic responses of Aspergillus flavus to temperature and oxidative stresses during aflatoxin production. Sci Rep. 2021;11:2803. https://doi.org/10.1038/s41598-021-82488-7.
Article CAS PubMed PubMed Central Google Scholar
Baazeem A, Rodriguez A, Medina A, Magan N. Impacts of climate change interacting abiotic factors on growth, aflD and aflR gene expression and aflatoxin B1 production by Aspergillus flavus strains in vitro and on pistachio nuts. Toxins (Basel). 2021. https://doi.org/10.3390/toxins13060385.
Tumukunde E, Xie R, Wang S. Updates on the functions and molecular mechanisms of the genes involved in Aspergillus flavus development and biosynthesis of aflatoxins. J Fungi. 2021;7(8):666. https://doi.org/10.3390/jof7080666.
Ding C, Tian T, Liu Q, et al. Transcriptomics and metabolomic profiling identify molecular mechanism for Aspergillus flavus infection in grain. Food Front. 2023;4:1845–58. https://doi.org/10.1002/fft2.303.
Casu A, Camardo Leggieri M, Toscano P, Battilani P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Compr Rev Food Sci Food Saf. 2024. https://doi.org/10.1111/1541-4337.13323.
Zhao P, Gu S, Han C, et al. Targeted and untargeted metabolomics profiling of wheat reveals amino acids increase resistance to Fusarium head blight. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.762605.
Article PubMed PubMed Central Google Scholar
Westphal KR, Bachleitner S, Severinsen MM, et al. Cyclic, hydrophobic hexapeptide fusahexin is the product of a nonribosomal peptide synthetase in Fusarium graminearum. J Nat Prod. 2021;84:2070–80. https://doi.org/10.1021/acs.jnatprod.0c00947.
Article CAS PubMed Google Scholar
Whit
Comments (0)