Prospects and Challenges of Catechins in Cardiovascular Disease

Kim B, Zhao W, Tang SY, Levin MG, Ibrahim A, Yang Y, et al. Endothelial lipid droplets suppress eNOS to link high fat consumption to blood pressure elevation. J Clin Invest. 2023;133(24). https://doi.org/10.1172/jci173160.

Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol. 2019;16(7):437–47. https://doi.org/10.1038/s41569-019-0167-4.

Article  PubMed  Google Scholar 

Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med. 2016;26(6):515–23. https://doi.org/10.1016/j.tcm.2016.03.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circ. 2016;133(10):979–87. https://doi.org/10.1161/circulationaha.115.019743.

Article  Google Scholar 

Smith SC Jr, Collins A, Ferrari R, Holmes DR Jr, Logstrup S, McGhie DV, et al. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol. 2012;60(22):2343–8. https://doi.org/10.1016/j.jacc.2012.08.962.

Article  PubMed  Google Scholar 

Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020;17(6):327–40. https://doi.org/10.1038/s41569-019-0326-7.

Article  PubMed  Google Scholar 

Guzik TJ, Touyz RM. Oxidative Stress, Inflammation, and Vascular Aging in Hypertension. Hypertension. 2017;70(4):660–7. https://doi.org/10.1161/hypertensionaha.117.07802.

Article  CAS  PubMed  Google Scholar 

Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells. 2020;9(6). https://doi.org/10.3390/cells9061391.

Preda A, Montecucco F, Carbone F, Camici GG, Lüscher TF, Kraler S, et al. SGLT2 inhibitors: from glucose-lowering to cardiovascular benefits. Cardiovasc Res. 2024;120(5):443–60. https://doi.org/10.1093/cvr/cvae047.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013;141(3):3282–9. https://doi.org/10.1016/j.foodchem.2013.05.122.

Article  CAS  PubMed  Google Scholar 

Hirao K, Yumoto H, Nakanishi T, Mukai K, Takahashi K, Takegawa D, et al. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. Life Sci. 2010;86(17–18):654–60. https://doi.org/10.1016/j.lfs.2010.02.017.

Article  CAS  PubMed  Google Scholar 

Jamuna S, Ashokkumar R, Sakeena Sadullah MS, Devaraj SN. Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of Class III PI3K/Beclin1-complex mediated cholesterol efflux. BioFactors. 2019;45(5):763–73. https://doi.org/10.1002/biof.1537.

Article  CAS  PubMed  Google Scholar 

Kluknavsky M, Balis P, Puzserova A, Radosinska J, Berenyiova A, Drobna M, et al. (-)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats. Oxid Med Cell Longev. 2016;2016:6949020. https://doi.org/10.1155/2016/6949020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng W, Hwang HS, Kryshtal DO, Yang T, Padilla IT, Tiwary AK, et al. Coordinated regulation of murine cardiomyocyte contractility by nanomolar (-)-epigallocatechin-3-gallate, the major green tea catechin. Mol Pharmacol. 2012;82(5):993–1000. https://doi.org/10.1124/mol.112.079707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Díez E, López-Oliva ME, Pérez-Jiménez J, Martín MA, Ramos S. Metabolic regulation of (-)-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food Funct. 2022;13(10):5602–15. https://doi.org/10.1039/d2fo00182a.

Article  CAS  PubMed  Google Scholar 

Wang W, Le T, Wang WW, Yin JF, Jiang HY. The Effects of Structure and Oxidative Polymerization on Antioxidant Activity of Catechins and Polymers. Foods. 2023;12(23). 10.3390/foods12234207

Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186(4):786–93. https://doi.org/10.1111/j.1469-8137.2010.03269.x.

Article  CAS  PubMed  Google Scholar 

Krych J, Gebicka L. Catalase is inhibited by flavonoids. Int J Biol Macromol. 2013;58:148–53. https://doi.org/10.1016/j.ijbiomac.2013.03.070.

Article  CAS  PubMed  Google Scholar 

Truong VL, Jeong WS. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int J Mol Sci. 2021;22(17). https://doi.org/10.3390/ijms22179109.

Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Mol. 2018;23(4). https://doi.org/10.3390/molecules23040965.

Wang CM, Hsu YM, Jhan YL, Tsai SJ, Lin SX, Su CH, et al. Structure Elucidation of Procyanidins Isolated from Rhododendron formosanum and Their Anti-Oxidative and Anti-Bacterial Activities. Mol. 2015;20(7):12787–803. https://doi.org/10.3390/molecules200712787.

Article  CAS  Google Scholar 

Luo L, Bai R, Zhao Y, Li J, Wei Z, Wang F, et al. Protective Effect of Grape Seed Procyanidins against H(2) O(2) -Induced Oxidative Stress in PC-12 Neuroblastoma Cells: Structure-Activity Relationships. J Food Sci. 2018;83(10):2622–8. https://doi.org/10.1111/1750-3841.14349.

Article  CAS  PubMed  Google Scholar 

Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev. 1998;7(4):351–4.

CAS  PubMed  Google Scholar 

Meesaragandla B, Hayet S, Fine T, Janke U, Chai L, Delcea M. Inhibitory Effect of Epigallocatechin Gallate-Silver Nanoparticles and Their Lysozyme Bioconjugates on Biofilm Formation and Cytotoxicity. ACS Appl Bio Mater. 2022;5(9):4213–21. https://doi.org/10.1021/acsabm.2c00409.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohri T, Suzuki M, Nanjo F. Identification of metabolites of (-)-epicatechin gallate and their metabolic fate in the rat. J Agric Food Chem. 2003;51(18):5561–6. https://doi.org/10.1021/jf034450x.

Article  CAS  PubMed  Google Scholar 

Monagas M, Urpi-Sarda M, Sánchez-Patán F, Llorach R, Garrido I, Gómez-Cordovés C, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010;1(3):233–53. https://doi.org/10.1039/c0fo00132e.

Article  CAS  PubMed  Google Scholar 

Liu C, Gan RY, Chen D, Zheng L, Ng SB, Rietjens I. Gut microbiota-mediated metabolism of green tea catechins and the biological consequences: An updated review. Crit Rev Food Sci Nutr. 2024;64(20):7067–84. https://doi.org/10.1080/10408398.2023.2180478.

Article  CAS  PubMed  Google Scholar 

Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem. 2016;37:1–12. https://doi.org/10.1016/j.jnutbio.2016.01.002.

Article  CAS  PubMed  Google Scholar 

Pan Q, Xie L, Cai P, Wu D, Zhu H, Xu L, et al. Acid-Resistant Nano-antioxidants Based on Epigallocatechin Gallate Alleviate Acute Intestinal and Kidney Inflammation. ACS Appl Mater Interfaces. 2024;16(35):46090–101. https://doi.org/10.1021/acsami.4c09901.

Article  CAS  PubMed  Google Scholar 

Li N, Taylor LS, Ferruzzi MG, Mauer LJ. Kinetic study of catechin stability: effects of pH, concentration, and temperature. J Agric Food Chem. 2012;60(51):12531–9. https://doi.org/10.1021/jf304116s.

Article  CAS  PubMed  Google Scholar 

Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, et al. Bioavailability of Tea Catechins and Its Improvement. Molecules. 2018;23(9). https://doi.org/10.3390/molecules23092346.

Lambert JD, Sang S, Yang CS. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Pharm. 2007;4(6):819–25. https://doi.org/10.1021/mp700075m.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif