Kim B, Zhao W, Tang SY, Levin MG, Ibrahim A, Yang Y, et al. Endothelial lipid droplets suppress eNOS to link high fat consumption to blood pressure elevation. J Clin Invest. 2023;133(24). https://doi.org/10.1172/jci173160.
Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol. 2019;16(7):437–47. https://doi.org/10.1038/s41569-019-0167-4.
Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med. 2016;26(6):515–23. https://doi.org/10.1016/j.tcm.2016.03.001.
Article CAS PubMed PubMed Central Google Scholar
Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circ. 2016;133(10):979–87. https://doi.org/10.1161/circulationaha.115.019743.
Smith SC Jr, Collins A, Ferrari R, Holmes DR Jr, Logstrup S, McGhie DV, et al. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol. 2012;60(22):2343–8. https://doi.org/10.1016/j.jacc.2012.08.962.
Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020;17(6):327–40. https://doi.org/10.1038/s41569-019-0326-7.
Guzik TJ, Touyz RM. Oxidative Stress, Inflammation, and Vascular Aging in Hypertension. Hypertension. 2017;70(4):660–7. https://doi.org/10.1161/hypertensionaha.117.07802.
Article CAS PubMed Google Scholar
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells. 2020;9(6). https://doi.org/10.3390/cells9061391.
Preda A, Montecucco F, Carbone F, Camici GG, Lüscher TF, Kraler S, et al. SGLT2 inhibitors: from glucose-lowering to cardiovascular benefits. Cardiovasc Res. 2024;120(5):443–60. https://doi.org/10.1093/cvr/cvae047.
Article CAS PubMed PubMed Central Google Scholar
Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013;141(3):3282–9. https://doi.org/10.1016/j.foodchem.2013.05.122.
Article CAS PubMed Google Scholar
Hirao K, Yumoto H, Nakanishi T, Mukai K, Takahashi K, Takegawa D, et al. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. Life Sci. 2010;86(17–18):654–60. https://doi.org/10.1016/j.lfs.2010.02.017.
Article CAS PubMed Google Scholar
Jamuna S, Ashokkumar R, Sakeena Sadullah MS, Devaraj SN. Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of Class III PI3K/Beclin1-complex mediated cholesterol efflux. BioFactors. 2019;45(5):763–73. https://doi.org/10.1002/biof.1537.
Article CAS PubMed Google Scholar
Kluknavsky M, Balis P, Puzserova A, Radosinska J, Berenyiova A, Drobna M, et al. (-)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats. Oxid Med Cell Longev. 2016;2016:6949020. https://doi.org/10.1155/2016/6949020.
Article CAS PubMed PubMed Central Google Scholar
Feng W, Hwang HS, Kryshtal DO, Yang T, Padilla IT, Tiwary AK, et al. Coordinated regulation of murine cardiomyocyte contractility by nanomolar (-)-epigallocatechin-3-gallate, the major green tea catechin. Mol Pharmacol. 2012;82(5):993–1000. https://doi.org/10.1124/mol.112.079707.
Article CAS PubMed PubMed Central Google Scholar
García-Díez E, López-Oliva ME, Pérez-Jiménez J, Martín MA, Ramos S. Metabolic regulation of (-)-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food Funct. 2022;13(10):5602–15. https://doi.org/10.1039/d2fo00182a.
Article CAS PubMed Google Scholar
Wang W, Le T, Wang WW, Yin JF, Jiang HY. The Effects of Structure and Oxidative Polymerization on Antioxidant Activity of Catechins and Polymers. Foods. 2023;12(23). 10.3390/foods12234207
Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186(4):786–93. https://doi.org/10.1111/j.1469-8137.2010.03269.x.
Article CAS PubMed Google Scholar
Krych J, Gebicka L. Catalase is inhibited by flavonoids. Int J Biol Macromol. 2013;58:148–53. https://doi.org/10.1016/j.ijbiomac.2013.03.070.
Article CAS PubMed Google Scholar
Truong VL, Jeong WS. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int J Mol Sci. 2021;22(17). https://doi.org/10.3390/ijms22179109.
Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Mol. 2018;23(4). https://doi.org/10.3390/molecules23040965.
Wang CM, Hsu YM, Jhan YL, Tsai SJ, Lin SX, Su CH, et al. Structure Elucidation of Procyanidins Isolated from Rhododendron formosanum and Their Anti-Oxidative and Anti-Bacterial Activities. Mol. 2015;20(7):12787–803. https://doi.org/10.3390/molecules200712787.
Luo L, Bai R, Zhao Y, Li J, Wei Z, Wang F, et al. Protective Effect of Grape Seed Procyanidins against H(2) O(2) -Induced Oxidative Stress in PC-12 Neuroblastoma Cells: Structure-Activity Relationships. J Food Sci. 2018;83(10):2622–8. https://doi.org/10.1111/1750-3841.14349.
Article CAS PubMed Google Scholar
Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev. 1998;7(4):351–4.
Meesaragandla B, Hayet S, Fine T, Janke U, Chai L, Delcea M. Inhibitory Effect of Epigallocatechin Gallate-Silver Nanoparticles and Their Lysozyme Bioconjugates on Biofilm Formation and Cytotoxicity. ACS Appl Bio Mater. 2022;5(9):4213–21. https://doi.org/10.1021/acsabm.2c00409.
Article CAS PubMed PubMed Central Google Scholar
Kohri T, Suzuki M, Nanjo F. Identification of metabolites of (-)-epicatechin gallate and their metabolic fate in the rat. J Agric Food Chem. 2003;51(18):5561–6. https://doi.org/10.1021/jf034450x.
Article CAS PubMed Google Scholar
Monagas M, Urpi-Sarda M, Sánchez-Patán F, Llorach R, Garrido I, Gómez-Cordovés C, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010;1(3):233–53. https://doi.org/10.1039/c0fo00132e.
Article CAS PubMed Google Scholar
Liu C, Gan RY, Chen D, Zheng L, Ng SB, Rietjens I. Gut microbiota-mediated metabolism of green tea catechins and the biological consequences: An updated review. Crit Rev Food Sci Nutr. 2024;64(20):7067–84. https://doi.org/10.1080/10408398.2023.2180478.
Article CAS PubMed Google Scholar
Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem. 2016;37:1–12. https://doi.org/10.1016/j.jnutbio.2016.01.002.
Article CAS PubMed Google Scholar
Pan Q, Xie L, Cai P, Wu D, Zhu H, Xu L, et al. Acid-Resistant Nano-antioxidants Based on Epigallocatechin Gallate Alleviate Acute Intestinal and Kidney Inflammation. ACS Appl Mater Interfaces. 2024;16(35):46090–101. https://doi.org/10.1021/acsami.4c09901.
Article CAS PubMed Google Scholar
Li N, Taylor LS, Ferruzzi MG, Mauer LJ. Kinetic study of catechin stability: effects of pH, concentration, and temperature. J Agric Food Chem. 2012;60(51):12531–9. https://doi.org/10.1021/jf304116s.
Article CAS PubMed Google Scholar
Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, et al. Bioavailability of Tea Catechins and Its Improvement. Molecules. 2018;23(9). https://doi.org/10.3390/molecules23092346.
Lambert JD, Sang S, Yang CS. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Pharm. 2007;4(6):819–25. https://doi.org/10.1021/mp700075m.
Comments (0)