1. National Heart, Lung, and Blood Institute, NHLBI Information & Resources on COVID-19, Long COVID [Internet]. Bethesda, MD: National Heart, Lung, and Blood Institute, c2024 [cited 2025 Apr 17]. Available from:
https://www.nhlbi.nih.gov/covid/long-covid.
2. Groff D, Sun A, Ssentongo AE, et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review. JAMA Netw Open 2021;4:e2128568.
3. Malik P, Patel K, Pinto C, et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-a systematic review and meta-analysis. J Med Virol 2022;94:253–262.
4. Acosta-Ampudia Y, Monsalve DM, Rojas M, et al. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J Infect Dis 2022;225:2155–2162.
5. Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022;185:881–895.e20.
6. Talla A, Vasaikar SV, Szeto GL, et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun 2023;14:3417.
7. Liu Q, Mak JWY, Su Q, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 2022;71:544–552.
8. Cervia-Hasler C, Brüningk SC, Hoch T, et al. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science 2024;383:eadg7942.
9. Thaweethai T, Jolley SE, Karlson EW, et al.; RECOVER Consortium. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 2023;329:1934–1946.
10. Erlandson KM, Geng LN, Selvaggi CA, et al.; RECOVER-Adult Cohort. Differentiation of prior SARS-CoV-2 infection and postacute sequelae by standard clinical laboratory measurements in the RECOVER cohort. Ann Intern Med 2024;177:1209–1221.
11. Jung J, Kim JY, Kwon JS, Yun SC, Kim SH. Comparison of waning immunity between booster vaccination and 2-dose vaccination with BNT162b2. Immune Netw 2022;22:e31.
12. Kwon JS, Kim JY, Kim MC, et al. Factors of severity in patients with COVID-19: cytokine/chemokine concentrations, viral load, and antibody responses. Am J Trop Med Hyg 2020;103:2412–2418.
13. Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020;383:2255–2273.
14. Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis 2021;224:1839–1848.
15. Schultheiß C, Willscher E, Paschold L, et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 2022;3:100663.
16. Torres-Ruiz J, Lomelín-Gascón J, Lira Luna J, et al. Novel clinical and immunological features associated with persistent postacute sequelae of COVID-19 after six months of follow-up: a pilot study. Infect Dis (Lond) 2023;55:243–254.
17. Patterson BK, Guevara-Coto J, Yogendra R, et al. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Front Immunol 2021;12:700782.
18. Queiroz MAF, Neves PFMD, Lima SS, et al. Cytokine profiles associated with acute COVID-19 and long COVID-19 syndrome. Front Cell Infect Microbiol 2022;12:922422.
19. Peluso MJ, Kelly JD, Lu S, et al. Persistence, magnitude, and patterns of postacute symptoms and quality of life following onset of SARS-CoV-2 infection: cohort description and approaches for measurement. Open Forum Infect Dis 2021;9:ofab640.
20. Demko ZO, Yu T, Mullapudi SK, et al. Two-year longitudinal study reveals that long COVID symptoms peak and quality of life nadirs at 6-12 months postinfection. Open Forum Infect Dis 2024;11:ofae027.
21. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021;38:101019.
22. Wang K, Khoramjoo M, Srinivasan K, et al. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med 2023;4:101254.
23. Seys SF, Scheers H, Van den Brande P, et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir Res 2017;18:39.
24. Cottrill KA, Rad MG, Ripple MJ, et al. Cluster analysis of plasma cytokines identifies two unique endotypes of children with asthma in the pediatric intensive care unit. Sci Rep 2023;13:3521.
25. Ji YB, Bo CL, Xue XJ, et al. Association of inflammatory cytokines with the symptom cluster of pain, fatigue, depression, and sleep disturbance in chinese patients with cancer. J Pain Symptom Manage 2017;54:843–852.
26. Bai J, Wu C, Zhong D, Xu D, Wang Q, Zeng X. Hierarchical cluster analysis of cytokine profiles reveals a cutaneous vasculitis-associated subgroup in dermatomyositis. Clin Rheumatol 2021;40:999–1008.
27. Fernández-Castañeda A, Lu P, Geraghty AC, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022;185:2452–2468.e16.
28. Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020;39:e106230.
29. Reiken S, Sittenfeld L, Dridi H, Liu Y, Liu X, Marks AR. Alzheimer’s-like signaling in brains of COVID-19 patients. Alzheimers Dement 2022;18:955–965.
30. Islam H, Chamberlain TC, Mui AL, Little JP. Elevated interleukin-10 levels in COVID-19: potentiation of pro-inflammatory responses or impaired anti-inflammatory action? Front Immunol 2021;12:677008.
31. Dhar SK, K V, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon 2021;7:e06155.
32. Lu L, Zhang H, Dauphars DJ, He YW. A potential role of interleukin 10 in COVID-19 pathogenesis. Trends Immunol 2021;42:3–5.
33. Philippe A, Günther S, Rancic J, et al. VEGF-A plasma levels are associated with impaired DLCO and radiological sequelae in long COVID patients. Angiogenesis 2024;27:51–66.
34. Patterson BK, Yogendra R, Guevara-Coto J, et al. Case series: maraviroc and pravastatin as a therapeutic option to treat long COVID/post-acute sequelae of COVID (PASC). Front Med (Lausanne) 2023;10:1122529.
35. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395:1417–1418.
36. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N Engl J Med 2020;383:120–128.
37. Castro P, Palomo M, Moreno-Castaño AB, et al. Is the endothelium the missing link in the pathophysiology and treatment of COVID-19 complications? Cardiovasc Drugs Ther 2022;36:547–560.
38. Romero-Ibarguengoitia ME, Rodríguez-Torres JF, Garza-Silva A, et al. Association of vaccine status, reinfections, and risk factors with Long COVID syndrome. Sci Rep 2024;14:2817.
39. Blomberg B, Mohn KG, Brokstad KA, et al.; Bergen COVID-19 Research Group. Long COVID in a prospective cohort of home-isolated patients. Nat Med 2021;27:1607–1613.
40. Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med 2021;27:626–631.
41. National Academies of Sciences, Engineering, and Medicine. A Long COVID definition: a chronic, systemic disease state with profound consequences. Washington: The National Academies Press, 2024.
42. National Academies of Sciences, Engineering, and Medicine. Long-term health effects of COVID-19: disability and function following SARS-CoV-2 infection. Washington: The National Academies Press, 2024.
43. Doll MK, Waghmare A, Heit A, et al. Acute and postacute COVID-19 outcomes among immunologically naive adults during delta vs omicron waves. JAMA Netw Open 2023;6:e231181.
44. Strahm C, Kahlert CR, Güsewell S, et al. Evolution of symptoms compatible with post-acute sequelae of SARS-CoV-2 (PASC) after Wild-type and/or Omicron BA.1 infection: a prospective healthcare worker cohort. J Infect 2024;88:200–202.
45. Junqueira C, Crespo Â, Ranjbar S, et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 2022;606:576–584.
46. Patterson BK, Francisco EB, Yogendra R, et al. Persistence of SARS CoV-2 S1 protein in CD16+ monocytes in post-acute sequelae of COVID-19 (PASC) up to 15 months post-infection. Front Immunol 2022;12:746021.
47. Yoon H, Dean LS, Jiyarom B, et al. Single-cell RNA sequencing reveals characteristics of myeloid cells in post-acute sequelae of SARS-CoV-2 patients with persistent respiratory symptoms. Front Immunol 2024;14:1268510.
48. Peluso MJ, Swank ZN, Goldberg SA, et al. Plasma-based antigen persistence in the post-acute phase of COVID-19. Lancet Infect Dis 2024;24:e345–e347.
49. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin Infect Dis 2023;76:e487–e490.
Comments (0)