SP3-Mediated Transcriptional Activation of GRIK1 is Involved in Alzheimer’s Disease-Induced Cognitive Decline by Inducing Inflammasome Activation in Microglia

Barczuk, J., Siwecka, N., Lusa, W., Rozpedek-Kaminska, W., Kucharska, E., & Majsterek, I. (2022). Targeting NLRP3-mediated neuroinflammation in Alzheimer’s disease treatment. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23168979

Article  PubMed  PubMed Central  Google Scholar 

Beug, S. T., Cheung, H. H., Sanda, T., St-Jean, M., Beauregard, C. E., Mamady, H., Baird, S. D., LaCasse, E. C., & Korneluk, R. G. (2019). The transcription factor SP3 drives TNF-alpha expression in response to Smac mimetics. Science Signaling. https://doi.org/10.1126/scisignal.aat9563

Article  PubMed  Google Scholar 

Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Frontiers in Immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376

Article  PubMed  PubMed Central  CAS  Google Scholar 

Diaz-Rodriguez, S. M., Herrero-Turrion, M. J., Garcia-Peral, C., & Gomez-Nieto, R. (2023). Delving into the significance of the His289Tyr single-nucleotide polymorphism in the glutamate ionotropic receptor kainate-1 (Grik1) gene of a genetically audiogenic seizure model. Frontiers in Molecular Neuroscience, 16, 1322750. https://doi.org/10.3389/fnmol.2023.1322750

Article  PubMed  CAS  Google Scholar 

Doostparast Torshizi, A., & Wang, K. (2022). Tissue-wide cell-specific proteogenomic modeling reveals novel candidate risk genes in autism spectrum disorders. NPJ Syst Biol Appl, 8(1), 31. https://doi.org/10.1038/s41540-022-00243-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gong, P., Chen, Y. Q., Lin, A. H., Zhang, H. B., Zhang, Y., Ye, R. D., & Yu, Y. (2020). p47(phox) deficiency improves cognitive impairment and attenuates tau hyperphosphorylation in mouse models of AD. Alzheimers Res Ther, 12(1), 146. https://doi.org/10.1186/s13195-020-00714-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Han, S., He, Z., Hu, X., Li, X., Zheng, K., Huang, Y., Xiao, P., Xie, Q., Ni, J., & Liu, Q. (2023). Inhibiting NLRP3 inflammasome activation by CY-09 helps to restore cerebral glucose metabolism in 3xTg-AD mice. Antioxidants (Basel). https://doi.org/10.3390/antiox12030722

Article  PubMed  PubMed Central  Google Scholar 

Holloway, O. G., King, A. E., & Ziebell, J. M. (2020). Microglia Demonstrate Local Mixed Inflammation and a Defined Morphological Shift in an APP/PS1 Mouse Model. Journal of Alzheimer’s Disease, 77(4), 1765–1781. https://doi.org/10.3233/JAD-200098

Article  PubMed  CAS  Google Scholar 

Huang, P., Zhang, Z., Zhang, P., Feng, J., Xie, J., Zheng, Y., Liang, X., Zhu, B., Chen, Z., Feng, S., Wang, L., Lu, J., Liu, Y., & Zhang, Y. (2024). TREM2 deficiency aggravates NLRP3 inflammasome activation and pyroptosis in MPTP-induced Parkinson’s disease mice and LPS-induced BV2 cells. Molecular Neurobiology, 61(5), 2590–2605. https://doi.org/10.1007/s12035-023-03713-0

Article  PubMed  CAS  Google Scholar 

Kourti, M., & Metaxas, A. (2024). A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer’s disease. Neurobiology of Diseases, 192, 106427. https://doi.org/10.1016/j.nbd.2024.106427

Article  CAS  Google Scholar 

Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener, 9(1), 42. https://doi.org/10.1186/s40035-020-00221-2

Article  PubMed  PubMed Central  Google Scholar 

Li, F., Sun, X., Sun, K., Kong, F., Jiang, X., & Kong, Q. (2024). Lupenone improves motor dysfunction in spinal cord injury mice through inhibiting the inflammasome activation and pyroptosis in microglia via the nuclear factor kappa B pathway. Neural Regeneration Research, 19(8), 1802–1811. https://doi.org/10.4103/1673-5374.389302

Article  PubMed  CAS  Google Scholar 

McManus, R. M., & Latz, E. (2024). NLRP3 inflammasome signalling in Alzheimer’s disease. Neuropharmacology, 252, 109941. https://doi.org/10.1016/j.neuropharm.2024.109941

Article  PubMed  CAS  Google Scholar 

Merighi, S., Nigro, M., Travagli, A., & Gessi, S. (2022). Microglia and Alzheimer’s disease. International Journal Molecular Science. https://doi.org/10.3390/ijms232112990

Article  Google Scholar 

Murphy, N., Grehan, B., & Lynch, M. A. (2014). Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Medicine, 16(1), 205–215. https://doi.org/10.1007/s12017-013-8274-6

Article  PubMed  CAS  Google Scholar 

Nguyen, M. A., Hoang, H. D., Rasheed, A., Duchez, A. C., Wyatt, H., Cottee, M. L., Graber, T. E., Susser, L., Robichaud, S., Berber, I., Geoffrion, M., Ouimet, M., Kazan, H., Maegdefessel, L., Mulvihill, E. E., Alain, T., & Rayner, K. J. (2022). miR-223 exerts translational control of proatherogenic genes in macrophages. Circulation Research, 131(1), 42–58. https://doi.org/10.1161/CIRCRESAHA.121.319120

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perneczky, R., Dom, G., Chan, A., Falkai, P., & Bassetti, C. (2024). Anti-amyloid antibody treatments for Alzheimer’s disease. European Journal of Neurology, 31(2), e16049. https://doi.org/10.1111/ene.16049

Article  PubMed  Google Scholar 

Rajesh, Y., & Kanneganti, T. D. (2022). Innate immune cell death in neuroinflammation and Alzheimer’s disease. Cells. https://doi.org/10.3390/cells11121885

Article  PubMed  PubMed Central  Google Scholar 

Rashid, K., Geissl, L., Wolf, A., & Karlstetter, M. (1861). Langmann T (2018) transcriptional regulation of translocator protein (18 kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. Biochimica Biophysica Acta (BBA) - Gene Regulatory Mechanism, 12, 1119–1133. https://doi.org/10.1016/j.bbagrm.2018.10.018

Article  CAS  Google Scholar 

Ruan, Y., Qiu, X., Lv, Y. D., Dong, D., Wu, X. J., Zhu, J., & Zheng, X. Y. (2019). Kainic acid Induces production and aggregation of amyloid beta-protein and memory deficits by activating inflammasomes in NLRP3- and NF-kappaB-stimulated pathways. Aging (Albany NY), 11(11), 3795–3810. https://doi.org/10.18632/aging.102017

Article  PubMed  CAS  Google Scholar 

Safe, S. (2023). Specificity proteins (Sp) and cancer. International Journal Molecular Science. https://doi.org/10.3390/ijms24065164

Article  Google Scholar 

Suske, G. (2017). NF-Y and SP transcription factors—New insights in a long-standing liaison. Biochimica Et Biophysica Acta, Gene Regulatory Mechanisms, 1860(5), 590–597. https://doi.org/10.1016/j.bbagrm.2016.08.011

Article  PubMed  CAS  Google Scholar 

Tasseva, G., Cole, L., & Vance, J. E. (2011). N-Myc and SP regulate phosphatidylserine synthase-1 expression in brain and glial cells. Journal of Biological Chemistry, 286(2), 1061–1073. https://doi.org/10.1074/jbc.M110.158709

Article  PubMed  CAS  Google Scholar 

Valbuena, S., Garcia, A., Mazier, W., Paternain, A. V., & Lerma, J. (2019). Unbalanced dendritic inhibition of CA1 neurons drives spatial-memory deficits in the Ts2Cje down syndrome model. Nature Communications, 10(1), 4991. https://doi.org/10.1038/s41467-019-13004-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wan, D., Feng, J., Wang, P., Yang, Z., & Sun, T. (2022). Hypoxia- and inflammation-related transcription factor SP3 may be involved in platelet activation and inflammation in intracranial hemorrhage. Frontiers in Neurology, 13, 886329. https://doi.org/10.3389/fneur.2022.886329

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y., Yang, J. Q., Hong, T. T., Sun, Y. H., Huang, H. L., Chen, F., Chen, X. J., Chen, H. Y., Dong, S. S., Cui, L. L., & Yang, T. L. (2020). RTN4B-mediated suppression of Sirtuin 2 activity ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer’s disease mouse model. Aging Cell, 19(8), e13194. https://doi.org/10.1111/acel.13194

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wiatrak, B., Jawien, P., Szelag, A., & Jeskowiak-Kossakowska, I. (2023). Does inflammation play a major role in the pathogenesis of Alzheimer’s disease? Neuromolecular Medicine, 25(3), 330–335. https://doi.org/10.1007/s12017-023-08741-6

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif