Barczuk, J., Siwecka, N., Lusa, W., Rozpedek-Kaminska, W., Kucharska, E., & Majsterek, I. (2022). Targeting NLRP3-mediated neuroinflammation in Alzheimer’s disease treatment. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23168979
Article PubMed PubMed Central Google Scholar
Beug, S. T., Cheung, H. H., Sanda, T., St-Jean, M., Beauregard, C. E., Mamady, H., Baird, S. D., LaCasse, E. C., & Korneluk, R. G. (2019). The transcription factor SP3 drives TNF-alpha expression in response to Smac mimetics. Science Signaling. https://doi.org/10.1126/scisignal.aat9563
Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Frontiers in Immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376
Article PubMed PubMed Central CAS Google Scholar
Diaz-Rodriguez, S. M., Herrero-Turrion, M. J., Garcia-Peral, C., & Gomez-Nieto, R. (2023). Delving into the significance of the His289Tyr single-nucleotide polymorphism in the glutamate ionotropic receptor kainate-1 (Grik1) gene of a genetically audiogenic seizure model. Frontiers in Molecular Neuroscience, 16, 1322750. https://doi.org/10.3389/fnmol.2023.1322750
Article PubMed CAS Google Scholar
Doostparast Torshizi, A., & Wang, K. (2022). Tissue-wide cell-specific proteogenomic modeling reveals novel candidate risk genes in autism spectrum disorders. NPJ Syst Biol Appl, 8(1), 31. https://doi.org/10.1038/s41540-022-00243-8
Article PubMed PubMed Central CAS Google Scholar
Gong, P., Chen, Y. Q., Lin, A. H., Zhang, H. B., Zhang, Y., Ye, R. D., & Yu, Y. (2020). p47(phox) deficiency improves cognitive impairment and attenuates tau hyperphosphorylation in mouse models of AD. Alzheimers Res Ther, 12(1), 146. https://doi.org/10.1186/s13195-020-00714-2
Article PubMed PubMed Central CAS Google Scholar
Han, S., He, Z., Hu, X., Li, X., Zheng, K., Huang, Y., Xiao, P., Xie, Q., Ni, J., & Liu, Q. (2023). Inhibiting NLRP3 inflammasome activation by CY-09 helps to restore cerebral glucose metabolism in 3xTg-AD mice. Antioxidants (Basel). https://doi.org/10.3390/antiox12030722
Article PubMed PubMed Central Google Scholar
Holloway, O. G., King, A. E., & Ziebell, J. M. (2020). Microglia Demonstrate Local Mixed Inflammation and a Defined Morphological Shift in an APP/PS1 Mouse Model. Journal of Alzheimer’s Disease, 77(4), 1765–1781. https://doi.org/10.3233/JAD-200098
Article PubMed CAS Google Scholar
Huang, P., Zhang, Z., Zhang, P., Feng, J., Xie, J., Zheng, Y., Liang, X., Zhu, B., Chen, Z., Feng, S., Wang, L., Lu, J., Liu, Y., & Zhang, Y. (2024). TREM2 deficiency aggravates NLRP3 inflammasome activation and pyroptosis in MPTP-induced Parkinson’s disease mice and LPS-induced BV2 cells. Molecular Neurobiology, 61(5), 2590–2605. https://doi.org/10.1007/s12035-023-03713-0
Article PubMed CAS Google Scholar
Kourti, M., & Metaxas, A. (2024). A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer’s disease. Neurobiology of Diseases, 192, 106427. https://doi.org/10.1016/j.nbd.2024.106427
Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener, 9(1), 42. https://doi.org/10.1186/s40035-020-00221-2
Article PubMed PubMed Central Google Scholar
Li, F., Sun, X., Sun, K., Kong, F., Jiang, X., & Kong, Q. (2024). Lupenone improves motor dysfunction in spinal cord injury mice through inhibiting the inflammasome activation and pyroptosis in microglia via the nuclear factor kappa B pathway. Neural Regeneration Research, 19(8), 1802–1811. https://doi.org/10.4103/1673-5374.389302
Article PubMed CAS Google Scholar
McManus, R. M., & Latz, E. (2024). NLRP3 inflammasome signalling in Alzheimer’s disease. Neuropharmacology, 252, 109941. https://doi.org/10.1016/j.neuropharm.2024.109941
Article PubMed CAS Google Scholar
Merighi, S., Nigro, M., Travagli, A., & Gessi, S. (2022). Microglia and Alzheimer’s disease. International Journal Molecular Science. https://doi.org/10.3390/ijms232112990
Murphy, N., Grehan, B., & Lynch, M. A. (2014). Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Medicine, 16(1), 205–215. https://doi.org/10.1007/s12017-013-8274-6
Article PubMed CAS Google Scholar
Nguyen, M. A., Hoang, H. D., Rasheed, A., Duchez, A. C., Wyatt, H., Cottee, M. L., Graber, T. E., Susser, L., Robichaud, S., Berber, I., Geoffrion, M., Ouimet, M., Kazan, H., Maegdefessel, L., Mulvihill, E. E., Alain, T., & Rayner, K. J. (2022). miR-223 exerts translational control of proatherogenic genes in macrophages. Circulation Research, 131(1), 42–58. https://doi.org/10.1161/CIRCRESAHA.121.319120
Article PubMed PubMed Central CAS Google Scholar
Perneczky, R., Dom, G., Chan, A., Falkai, P., & Bassetti, C. (2024). Anti-amyloid antibody treatments for Alzheimer’s disease. European Journal of Neurology, 31(2), e16049. https://doi.org/10.1111/ene.16049
Rajesh, Y., & Kanneganti, T. D. (2022). Innate immune cell death in neuroinflammation and Alzheimer’s disease. Cells. https://doi.org/10.3390/cells11121885
Article PubMed PubMed Central Google Scholar
Rashid, K., Geissl, L., Wolf, A., & Karlstetter, M. (1861). Langmann T (2018) transcriptional regulation of translocator protein (18 kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. Biochimica Biophysica Acta (BBA) - Gene Regulatory Mechanism, 12, 1119–1133. https://doi.org/10.1016/j.bbagrm.2018.10.018
Ruan, Y., Qiu, X., Lv, Y. D., Dong, D., Wu, X. J., Zhu, J., & Zheng, X. Y. (2019). Kainic acid Induces production and aggregation of amyloid beta-protein and memory deficits by activating inflammasomes in NLRP3- and NF-kappaB-stimulated pathways. Aging (Albany NY), 11(11), 3795–3810. https://doi.org/10.18632/aging.102017
Article PubMed CAS Google Scholar
Safe, S. (2023). Specificity proteins (Sp) and cancer. International Journal Molecular Science. https://doi.org/10.3390/ijms24065164
Suske, G. (2017). NF-Y and SP transcription factors—New insights in a long-standing liaison. Biochimica Et Biophysica Acta, Gene Regulatory Mechanisms, 1860(5), 590–597. https://doi.org/10.1016/j.bbagrm.2016.08.011
Article PubMed CAS Google Scholar
Tasseva, G., Cole, L., & Vance, J. E. (2011). N-Myc and SP regulate phosphatidylserine synthase-1 expression in brain and glial cells. Journal of Biological Chemistry, 286(2), 1061–1073. https://doi.org/10.1074/jbc.M110.158709
Article PubMed CAS Google Scholar
Valbuena, S., Garcia, A., Mazier, W., Paternain, A. V., & Lerma, J. (2019). Unbalanced dendritic inhibition of CA1 neurons drives spatial-memory deficits in the Ts2Cje down syndrome model. Nature Communications, 10(1), 4991. https://doi.org/10.1038/s41467-019-13004-9
Article PubMed PubMed Central CAS Google Scholar
Wan, D., Feng, J., Wang, P., Yang, Z., & Sun, T. (2022). Hypoxia- and inflammation-related transcription factor SP3 may be involved in platelet activation and inflammation in intracranial hemorrhage. Frontiers in Neurology, 13, 886329. https://doi.org/10.3389/fneur.2022.886329
Article PubMed PubMed Central Google Scholar
Wang, Y., Yang, J. Q., Hong, T. T., Sun, Y. H., Huang, H. L., Chen, F., Chen, X. J., Chen, H. Y., Dong, S. S., Cui, L. L., & Yang, T. L. (2020). RTN4B-mediated suppression of Sirtuin 2 activity ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer’s disease mouse model. Aging Cell, 19(8), e13194. https://doi.org/10.1111/acel.13194
Article PubMed PubMed Central CAS Google Scholar
Wiatrak, B., Jawien, P., Szelag, A., & Jeskowiak-Kossakowska, I. (2023). Does inflammation play a major role in the pathogenesis of Alzheimer’s disease? Neuromolecular Medicine, 25(3), 330–335. https://doi.org/10.1007/s12017-023-08741-6
Comments (0)