Adams RP, (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Allured Publishing Corporation, Carol Stream, IL, USA
Adesanya AW, Lavine MD, Moural TW, Lavine LC, Zhu F, Walsh DB (2021) Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J Pest Sci 94:639–663. https://doi.org/10.1007/s10340-021-01342-x
Akeumbiwo TC, Kojom LP, Ndo C, Essangui SE, Cheteug NG, Eya’Ane MF, Ayong L, Eboumbou CE (2023) Chemical composition and repellent activity of essential oils of Tithonia diversifolia (Asteraceae) leaves against the bites of Anopheles coluzzii. Sci Rep 13:6001. https://doi.org/10.1038/s41598-023-31791-6
Alonso-Gato M (2021) Essential oils as antimicrobials in crop protection. Antibiotics 10:1–12. https://doi.org/10.3390/antibiotics10010034
Arantes ACS, Ribeiro JCS, Soares DS (2024) Alpha- and beta-pinene isomers act differently to control Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res 123:164. https://doi.org/10.1007/s00436-024-08187-0
Aslan I (2004) Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crops Prod 19:167–173. https://doi.org/10.1016/j.indcrop.2003.09.003
Braga KS, de Castro HG, Teixeira VL, Barbosa LC, Demuner AJ (2020) Influência das condições de cultivo sobre a produção de óleo essencial do capim citronela (Cymbopogon nardus). Braz J Health Pharm 2(1):49–59
Dongmo AN, Nguefack J, Dongmo JBL (2021) Chemical characterization of an aqueous extract and the essential oil of Tithonia diversifolia and their biocontrol activity against seed-borne pathogens of rice. J Plant Dis Prot 128:703–713. https://doi.org/10.1007/s41348-021-00439-w
Gama RM, Guimarães M, Abreu LC, Armando-Junior (2014) Phytochemical screening and antioxidant activity of the ethanolic extract of Tithonia diversifolia (Hemsl) A Gray dry flowers. Asian Pac J Trop Biomed 4(9):740–742. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0055
Githinji JM, Maitho T, Mbaria, (2021) Ethnobotanical study of plants used in ectoparasite control in Murang’a County, Kenya. IOSR J Pharm Biol Sci 13:2319–7676. https://doi.org/10.9790/3008-1304025662
Guerra, A. M. N. de M., Silva, D. dos S., Santos, P. S., & Santos, L. B. dos. (2019). Teste de repelência de óleos essenciais sobre Callosobruchus maculatus. Revista Brasileira De Agropecuária Sustentável 9(3). https://doi.org/10.21206/rbas.v9i3.3070
Kovats E (1965) Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1:229
Lamaty G (1991) Aromatic plants of tropical central Africa. III. Constituents of the essential oil of the leaves of Tithonia diversifolia (Hemsl.) A. Gray from Cameroon. J Essent Oil Res 3(6):399–402. https://doi.org/10.1080/10412905.1991.9697973
Maina GJ, Timothy M, Muchunu MJ (2018) Anti-feas activity and safety of extracts Tithonia diversifolia and Senna didymobotrya. J Pharm Pharmacol Res 2(3):078–092. https://doi.org/10.26502/jppr.0012
Njuguna MJ, Muriuki M, Karenga S (2022) Contact toxicity of Tithonia diversifolia essential oils against Aphis gosypii, Thrips tabaci and Bemisia tabaci. J Int Pesqu Avançada 5(1):10–20. https://doi.org/10.37284/ijar.5.1.534
Nunes MP, Rizental M (2015) Food preference of Sitophilus zeamais (Coleoptera: Curculionidae) in transgenic corn varieties. Magazine Connect Online 12:84–89. https://doi.org/10.18312/connectionline.v0i12.206
Oliveira G (2020) Chemical characterization, antimicrobial activity and toxicity of essential oils of Pimenta dioica L. (allspice) and Citrus sinensis L. Osbeck (sweet orange). Colombian J Chem Pharm Sci 3:641–655. https://doi.org/10.33448/rsd-v9i7.4842
Oyewole IO (2008) Anti-malarial and repellent activities of Tithonia diversifolia (Hemsl.) leaf extracts. J Med Plants Res 2(8):171–175. https://doi.org/10.5897/JMPR08.346
Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21(12):1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005
Article CAS PubMed Google Scholar
Pedrotti C, Ribeiro R, Schwambach J (2019) Control of post-harvest fungal rot in grapes through the use of essential oils from Baccharis trimera and Baccharis dracunculifolia. Crop Prot 125:0261–2194. https://doi.org/10.1016/j.cropro.2019.104912
Rajmohan KS, Chandrasekaran R, Varjani S (2020) A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol 60(2):125–138. https://doi.org/10.1007/s12088-019-00841-x
Article CAS PubMed PubMed Central Google Scholar
Rossetto CJ (1972) Corn resistance to ear pests, Helicoverpa zea (Boddie), Sitophilus zeamais, Motschulsky and Sitotroga cerealela. Colombian J Chem Pharm Sci 8:912–935. https://doi.org/10.11606/T.11.1900.tde-20240301-143424
Santos AS, Alves SM, Figueiredo FJC (2004) Technical announcement 99: description of system and methods for extraction of essential oils and determination of biomass moisture in the laboratory. Ministry of Agriculture, Livestock and Supply. 6pm. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/402448/descricao-de-sistema-e-de-metodos-de-extracao-de-oleos-essenciais-e-determinacao-de- umidade-de-biomassa-em-laboratório. Accessed on July 22, 2023.
Shimizu MY, Mourão MAN (2022) Environmental management as a mitigating tool for environmental impacts caused by pesticides affecting populations of the stingless bee species Tetragonisca angustula (Hymenoptera: Apidae). Ibero-Am J Human Sci Educ 8(4):1731–1749. https://doi.org/10.51891/rease.v8i4.5190
Silva MR, Farias PM (2020) Pimenta racemosa essential oil is an efficient insecticide for controlling Sitophilus spp. (Coleoptera: Curculionidae) in stored grains. Pesqui Agropecu Gaúch 1:7–17. https://doi.org/10.36812/pag.20202617-17
Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM, Carrière Y (2014) Defining terms for proactive management of resistance to Bt crops and pesticides. J Econ Entomol 107(2):496–507. https://doi.org/10.1603/ec13458
Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452. https://doi.org/10.1146/annurev-ento-020117-043507
Article CAS PubMed Google Scholar
Wanzala W, Mukabana R, Hassanali A (2018) The effect of Tagetes minuta and Tithonia diversifolia essential oils on brown ear tick host behavior Rhipicephalus apendiculatus. Res Rural Dev 30(6):27 https://api.semanticscholar.org/CorpusID:92488105
Yoon C, Kang SH, Yang JO, Noh DJ, Indiragandhi P, Kim GH (2009) Repellent activity of citrus oils against Blattella germanica, Periplaneta americana, and P fuliginosa. J Pest Sci 34(2):77–88. https://doi.org/10.1584/jpestics.G07-30
Yousaf HK, Shan T, Chen X, Ma K, Shi X, Desneux N, Biondi A, Gao X (2018) Impact of plant secondary metabolite cucurbitacin B on demographic characteristics of melon aphid Aphis Gossypii. Sci Rep 8:16473. https://doi.org/10.1038/s41598-018-34821-w
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Wang D, Jian F (2020) Movement and distribution of Sitophilus zeamais adults and relationship between their density and trapping frequency in wheat bulks under different grain temperatures and moisture contents. J Stored Prod Res 87(1):101590. https://doi.org/10.1016/j.jspr.2020.101590
Zikankuba VL, Mwanyika G, Ntwenya JE, James A (2019) Pesticide regulations and their medical malpractice implications for food and environmental safety. Cogent Food Agric 5:160–174. https://doi.org/10.1080/23311932.2019.1601544
Comments (0)