Ethanolic Botanical Extracts: A Bioinsecticide Approach to Controlling (Coleoptera: Meloidae)

Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267

Article  CAS  Google Scholar 

Abd El-Ghany NM, Abd El-Aziz SE (2017) External morphology of antennae and mouthpart sensillae of the granary weevil (Coleoptera: Curculionidae). J Entomol Sci 52(1):29–38

Google Scholar 

Adams CL, Selander RB (1979) The biology of the blister beetles of the vittata group of the genus Epicauta (Coleoptera: Meloidae). Bull Am Mus Nat Hist 162:137–266

Google Scholar 

Achimón F, Beato M, Brito VD, Peschiutta ML, Herrera JM, Merlo C, Zunino MP (2022) Insecticidal and repellent effects of the essential oils obtained from Argentine aromatic flora. Bol Soc Argent Bot 57:651–670. https://doi.org/10.31055/1851.2372.v57.n4.37995

Article  Google Scholar 

Al-kaf AG, Crouch RA, Denkert A, Porzel A, Al-Hawshabi OS, Ali NAA, Wessjohann L (2016) Chemical composition and biological activity of essential oil of Chenopodium ambrosioides from Yemen. Am J Essent Oils Nat Prod 4(1):20–22

Google Scholar 

Arena JS, Omarini AB, Zunino MP, Peschiutta ML, Defagó MT, Zygadlo JA (2018) Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Ind Crops Prod 122:190–194. https://doi.org/10.1016/j.indcrop.2018.05.077

Article  CAS  Google Scholar 

Arnold DC (1976) Blister beetles of Oklahoma. Oklahoma St Univ Exp Sta Tech Bull T- 145:68

Google Scholar 

Benitez NP, Gallardo KC, Valencia CM (2014) Actividad repelente de especies vegetales que crecen en la Región del Chocó. Rev Facu Cien Bás 10(2):196–203. https://doi.org/10.18359/rfcb.330

Article  Google Scholar 

Boutkhil S, El Idrissi M, Amechrouq A, Chbicheb A, Chakir S, El Badaoui K (2009) Chemical composition and antimicrobial activity of crude, aqueous, ethanol extracts and essential oils of Dysphania ambrosioides (L.) Mosyakin & Clemants. Acta Bot Gall 156(2):201–209. https://doi.org/10.1080/12538078.2009.10516151

Article  Google Scholar 

Campos-Soldini MP, Zapata LD, Wagner LS, Fernández EN, Safenraiter ME (2021) Contribución al estudio de la ecología y biología de Epicauta atomaria (Coleoptera: Meloidae), insecto asociado a cultivos agrícolas en América del Sur. RIA 47(3):367–375. http://www.scielo.org.ar/pdf/ria/v47n3/0325-8718-RIA-47-03-00367.pdf

Chiasson H, Bostanian NJ, Vincent C (2004a) Acaricidal properties of a Chenopodium-based botanical. J Econ Entomol 97:1373–1377. https://doi.org/10.1093/jee/97.4.1373

Article  CAS  PubMed  Google Scholar 

Chiasson H, Vincent C, Bostanian NJ (2004b) Insecticidal properties of a Chenopodium-based botanical. J Econ Entomol 97:1378–1383. https://doi.org/10.1093/jee/97.4.1378

Article  CAS  PubMed  Google Scholar 

Chu SS, Feng HuJ, Liu ZL (2011) Composition of essential oil of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil. Sitophilus Zeamais Pest Manag Sci 67(6):714–718. https://doi.org/10.1002/ps.2112

Article  CAS  PubMed  Google Scholar 

Christensen CM, Townsend LH (1988) Blister Beetles in Alfalfa. 8–10

Claux O, Santerre C, Abert-Vian M, Touboul D, Vallet N, Chemat F (2021) Alternative and sustainable solvents for green analytical chemistry. Curr Opin Green Sustain Chem 31:100510. https://doi.org/10.1016/j.cogsc.2021.100510

Article  CAS  Google Scholar 

Conover WJ (1999) Practical Nonparametric Statistics, 3rd edn. John Wiley and Sons, New York

Google Scholar 

Dasenaki I, Betsi PC, Raptopoulos D, Konstantopoulou M (2022) Insecticidal effect of Pistacia lentiscus (Anacardiaceae) metabolites against Lobesia botrana (Lepidoptera: Tortricidae). Agronomy 12(4):755. https://doi.org/10.3390/agronomy12040755

Article  CAS  Google Scholar 

Dayzie D (2023) Evaluating cultivars of 3 vegetable crops for inclusion in a food security systems (Master’s thesis). College of Agriculture, Kansas State University, Department of Horticulture and Natural Resources

Google Scholar 

Deb M, Kumar D (2020) Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium castaneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotoxicol Environ Saf 189:109988. https://doi.org/10.1016/j.ecoenv.2019.109988

Article  CAS  PubMed  Google Scholar 

Denloye A, Makanjuola A, Teslim K, Alafa A, Kasali A, Eshilokun O (2010) Toxicity of Chenopodium ambrosioides L. (Chenopodiaceae) products from Nigeria against three storage insects. J Pl Prot Res. 50(3):379–384. https://doi.org/10.1016/j.ecoenv.2019.109988

Article  CAS  Google Scholar 

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016) InfoStat versión (2016) Grupo InfoStat, FCA, Argentina

Di Iorio OR (2004) Meloidae. En: Cordo HA, Logarzo G, Braun K, Di Iorio O (Eds) Catálogo de insectos fitófagos de la Argentina y sus plantas asociadas. Soc Entomol Argen. 97–1001, 104–108, 115–121

Ellman GL, Courtney D, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

Article  CAS  PubMed  Google Scholar 

Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, London, UK

Google Scholar 

Fomsgaard IS, Añon MC, Barba de la Rosa AP, Christophersen C, Dusek K, Délano-Frier J, Espinoza Pérez J, Fonseca A, Janovská D, et al. (2010) Adding value to Holy Grain: providing the key tools for the exploitation of amaranth - the protein-rich grain of the Aztecs. Results from a Joint European-Latin American Research Project

Galindo-Guzmán M, Flores-Loyola E, Gallegos-Robles MÁ, Fortis-Hernández M, Figueroa-Viramontes U, Vázquez-Vázquez C (2019) Acetilcolinesterasa de Eisenia foetida como indicador de contaminación por plaguicidas organofosforados. Rev Int Contam Ambient 35(1):115–124

Article  Google Scholar 

Gnankiné O, Bassolé IHN (2017) Essential oils as an alternative to pyrethroids’ resistance against Anopheles species complex Giles (Diptera: Culicidae). Molecules 22(10):1321. https://doi.org/10.3390/molecules22101321

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghoneim S (2013) Enhancement of research interests in physiology and biochemistry of blister beetles (Coleoptera: Meloidae): a review. Int Res J Biochem Bioinform 3(4):75–92

Google Scholar 

Glavan G, Novak S, Božič J, Kokalj AJ (2020) Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees. Pestic Biochem Physiol 166:104567. https://doi.org/10.1016/j.pestbp.2020.104567

Article  CAS  PubMed  Google Scholar 

Herrera JM, Zunino MP, Dambolena JS, Pizzolitto RP, Gañan NA, Lucini EI, Zygadlo JA (2015) Terpene ketones as natural insecticides against Sitophilus zeamais. Ind Crops Prod 70:435–442. https://doi.org/10.1016/j.indcrop.2015.03.074

Article  CAS  Google Scholar 

Hewis LG, Daeli GBC, Tanoto K, Carlos C, Sahamastuti AAT (2020) A review of botany phytochemical and pharmacological effects of Dysphania ambrosioides. Indones J Life Sci 2(2):70–82. https://doi.org/10.54250/ijls.v2i2.4

Article  Google Scholar 

Isman MB (2023) Commercialization and regulation of botanical biopesticides: a global perspective. In: Development and Commercialization of Biopesticides. Elsevier. 25. https://doi.org/10.1016/B978-0-323-95290-3.00001-7

Jeyasankar A, Chennaiyan V, Chinnamani T (2016) Evaluation of five essential plant oils as a source of repellent and larvicidal activities against larvae of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Entomol 13(3):98–103

Article  CAS  Google Scholar 

Jovanović Z, Kostić M, Popović Z (2007) Grain-protective properties of herbal extracts against the bean weevil Acanthoscelides obtectus Say. Ind Crops Prod 26(1):100–104. https://doi.org/10.1016/j.indcrop.2007.01.010

Article  Google Scholar 

Kachhwaha N, Meena DG, Meena S (2016) Plant extracts control Oryzaephilus surinamensis by showing repellency behavior. Eur J Exp Biol 5(5):98–101

Google Scholar 

Kayesth S, Kumar S, Shazad M, Gupta KK (2020) Effects of hexane extract of Lantana camara leaves on reproductive bioactivities of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoreidae). Acta Ecol Sin 40(3):247–253. https://doi.org/10.1016/j.chnaes.2019.05.007

Article  Google Scholar 

Kemal M, Koçak AÖ (2008) Occurrence of two Epicauta species in Asia with some notes (Coleoptera Meloidae). Cesa News 34:1–4

Google Scholar 

Lima RK, Cardoso MDG, Moraes JC, Carvalho SM, Rodrigues VG, Guimarães LGL (2011) Chemical composition and fumigant effect of essential oil of Lippia sides Cham and monoterpenes against Tenebrio molitor (L) (Coleoptera: Tenebrionidae). Ciênc Agrotec. 35(4):664–671

Article  CAS  Google Scholar 

Liu S, Wang X, Xu Y, Zhang R, Xiao S, Wang Y, Zhang L (2019) Antifeedant and ovicidal activities of ginsenosides against Asian corn borer, Ostrinia furnacalis (Guenee). PLOS ONE 14(2). https://doi.org/10.1371/journal.pone.0211905

López MD, Pascual-Villalobos MJ (2010) Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crops Prod 31(2):284–288. https://doi.org/10.1016/j.indcrop.2009.11.005

Article  CAS  Google Scholar 

Lückmann J, Assmann T (2006) Reproductive biology and strategies of nine meloid beetles from Central Europe (Coleoptera: Meloidae). J Nat Hist 39(48):4101–4125

Article  Google Scholar 

Mendoza-García EE, Ortega-Arenas LD, Pérez-Pacheco R, Rodríguez-Hernández C (2014) Repellency toxicity, and oviposition inhibition of vegetable extracts against greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Chil J Agric Res 74(1):41–48. https://doi.org/10.4067/S0718-58392014000100007

Article  Google Scholar 

Mossavi MP, Kashiri M, Maghsoudlou Y, Khomiri M, Alami M (2022) Development and characterization of a novel multifunctional film based on wheat filter flour incorporated with carvacrol: Antibacterial, antifungal, and insecticidal potentials. Food Sci Technol Int 28(7):603–612. https://doi.org/10.1177/10820132211041826

Article  CAS  PubMed 

Comments (0)

No login
gif