Phylogenetic Structure of Two Euglossine Communities Divided by the Colombian Andes

Abrahamczyk S, Vos JM, Sedivy C, Gottleuber P, Kessler M (2014) A humped latitudinal phylogenetic diversity pattern of orchid bees ( Hymenoptera : Apidae : Euglossini ) in western Amazonia : assessing the influence of climate a geologic history. 500–8. https://doi.org/10.1111/j.1600-0587.2013.00417.x

Ackerman JD (1983) Diversity and seasonality of male euglossine bees (Hymenoptera: Apidae) in central Panamá. Ecology 64(2):274–283. https://doi.org/10.2307/1937075

Article  Google Scholar 

Antonini Y, Machado CdB, Galetti PM Jr, Oliveira M, Dirzo R, Fernandes GW (2017) Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia. PLoS ONE 12(4):e0175884. https://doi.org/10.1371/journal.pone.0175884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci 112(24):6110–6115. https://doi.org/10.1073/pnas.1423853112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartomeus I, Park MG, Gibbs J, Danforth BN, Lakso AN, Winfree R (2013) Biodiversity ensures plant-pollinator phenological synchrony against climate change. Ecol Lett 16(11):1331–1338. https://doi.org/10.1111/ele.12170

Article  PubMed  Google Scholar 

Becker P, Moure JS, Peralta FJA (1991) More about euglossine bees in Amazonian Forest fragments. Biotropica 23(4):586–591. https://doi.org/10.2307/2388396

Article  Google Scholar 

Begon M, Harper JL, Townsend CR (1990) Ecology: individuals, populations and communities. Blackwell Science, London

Google Scholar 

Bonilla MA, Nates G (1992) Abejas euglosinas de Colombia (Hymenoptera: Apidae: Euglossinae) I. Claves ilustradas. Caldasia 17(1):149–172

Google Scholar 

Botsch JC, Walter ST, Karubian J, González N, Dobbs EK, Brosi BJ (2017) Impacts of forest fragmentation on orchid bee (Hymenoptera: Apidae: Euglossini) communities in the Chocó biodiversity hotspot of northwest Ecuador. J Insect Conserv 21(4):633–643. https://doi.org/10.1007/s10841-017-0006-z

Article  Google Scholar 

Bozinovic F, Cruz-Neto AP, Cortés A, Diaz GB, Ojeda RA, Giannoni SM (2007) Physiological diversity intolerance to water deprivation among species of South American desert rodents. J Arid Environ 70(3):427–442. https://doi.org/10.1016/j.jaridenv.2007.01.003

Article  Google Scholar 

Brand P, Ramírez SR, Leese F, Quezada-Euan JJ, Tollrian R, Eltz T (2015) Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol Biol 15(1):1–6. https://doi.org/10.1186/s12862-015-0451-9

Article  CAS  Google Scholar 

Brooker RW, Callaway RM, Cavieres LA, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Valiente-Banuet A, Whitham (2009) Don't diss integration: a comment on Ricklefs's disintegrating communities. Am Nat 174, 919–27 

Article  PubMed  Google Scholar 

Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12(7):693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x

Article  PubMed  Google Scholar 

Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498. https://doi.org/10.1007/s00442-003-1311-7

Article  PubMed  Google Scholar 

Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc R Soc B Biol Sci 273(1599):2257–2266. https://doi.org/10.1098/rspb.2006.3545

Article  Google Scholar 

Dressler RL (1982) Biology of the orchid bee (Euglossini). Annu Rev Ecol Syst 13:373–394. https://doi.org/10.1146/annurev.es.13.110182.002105

Article  Google Scholar 

Fagua JC, Ramsey RD (2019) Geospatial modeling of land cover change in the Chocó-Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS ONE 14(2). https://doi.org/10.1371/journal.pone.0211324

Figueiredo J, Hoorn C, van der Ven P, Soares E (2009) Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37(7):619–622. https://doi.org/10.1130/G25567A.1

Article  Google Scholar 

Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46(1):1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

Article  Google Scholar 

Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF (2014) Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506:364–366. https://doi.org/10.1038/nature12977

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Córdoba M, Montoya-Lerma J (2014) Las abejas (Hymenoptera: Apoidea) del Parque Nacional Natural Gorgona, Pacífico colombiano. Rev Bio Trop 62(1):297–305

Article  Google Scholar 

Graham CH, Parra JL, Rahbek C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird communities. Proc Natl Acad Sci 106(2):19673–19678. https://doi.org/10.1073/pnas.0901649106

Article  PubMed  PubMed Central  Google Scholar 

Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112(7):1091–1105. https://doi.org/10.1130/0016-7606(2000)112%3c1091:UHOTCA%3e2.0.CO;2

Article  Google Scholar 

Hammer Ø, Harper DA (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1

Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38(2):210–221. https://doi.org/10.2307/3544021

Article  Google Scholar 

Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, London. https://doi.org/10.1093/oso/9780198546412.001.0001

Hoiss B, Krauss J, Potts SG, Roberts S, Steffan-Dewenter I (2012) Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc R Soc B 279(1746):4447–4456. https://doi.org/10.1098/rspb.2012.1581

Article  PubMed  PubMed Central  Google Scholar 

Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J et al (2010) Amazonia through time: Andean uplift, climate change, lansdcape evolution, and biodiversity. Science 330(6006):927–931. https://doi.org/10.1126/science.1194585

Article  CAS  PubMed  Google Scholar 

Kattan GH, Franco P, Rojas V, Morales G (2004) Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J Biogeogr 31(11):1829–1839. https://doi.org/10.1111/j.1365-2699.2004.01109.x

Article  Google Scholar 

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464. https://doi.org/10.1093/bioinformatics/btq166

Article  CAS  PubMed  Google Scholar 

Leibold MA, Economo EP, Peres-Neto P (2010) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol Lett 13(10):1290–1299. https://doi.org/10.1111/j.1461-0248.2010.01523.x

Article  PubMed  Google Scholar 

Linsley EG (1958) The ecology of solitary bees. J Agric Sci 27(19):543–599. https://doi.org/10.3733/hilg.v27n19p543

Article  Google Scholar 

Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer in methods and computing. John Wiley & Sons, New York

Google Scholar 

Marshall LG, Sempere T (1993) Evolution of the Neotropical Cenozoic land mammal fauna in its geochronologic, stratigraphic, and tectonic context. In: Goldblatt P (ed) Biological relationships between Africa South America, Yale University Press, New Haven, pp. 392. https://doi.org/10.2307/j.ctt22726mc

Martins DC, de Albuquerque PMC, Rebêlo JMM, Kotelok-Diniz T, Sofia SH, Frantine-Silva W (2021) Phytogeographic regions and geographic distance do not predict genetic structure in the orchid bee Euglossa cordata. J Apic Res 62(4):663–674. https://doi.org/10.1080/00218839.2021.1905373

Article  Google Scholar 

McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob Ecol Biogeogr 16(1):1–13. https://doi.org/10.1111/j.1466-8238.2006.00263.x

Article  Google Scholar 

Melo AS, Rangel TFLVB, Diniz-Filho JAF (2009) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32:226–236. https://doi.org/10.1111/j.1600-0587.2008.05502.x

Article  Google Scholar 

Michener CD (1979) Biogeography of the bees. Ann Missouri Bot Gard 66(3):277–347. https://doi.org/10.2307/2398833

Article  Google Scholar 

Montes C et al (2015) Middle Miocene closure of the Central American Seaway. Science 348:226–229. https://doi.org/10.1126/science.aaa281

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif