Bimodal solutions in peritoneal dialysis: what can we expect from different glucose volumes added to the icodextrin bag? Data from a simulation procedure

Ateş K, Nergızoğlu G, Keven K, Şen A, Kutlay S, Ertürk Ş et al (2001) Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 60(2):767–776

PubMed  Google Scholar 

Ng JKC, Kwan BCH, Chow KM, Pang WF, Cheng PMS, Leung CB et al (2018) Asymptomatic fluid overload predicts survival and cardiovascular event in incident Chinese peritoneal dialysis patients. PLOS ONE. 13(8):e0202203

PubMed  PubMed Central  Google Scholar 

Brown EA, Davies SJ, Rutherford P, Meeus F, Borras M, Riegel W et al (2003) Survival of functionally anuric patients on automated peritoneal dialysis: the european APD outcome study. J Am Soc Nephrol 14(11):2948–2957

PubMed  Google Scholar 

Devuyst O, Margetts PJ, Topley N (2010) The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 21(7):1077–1085

CAS  PubMed  Google Scholar 

Davies SJ, Phillips L, Naish PF, Russell GI (2001) Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 12(5):1046–1051

CAS  PubMed  Google Scholar 

Mistry CD, Gokal R, Peers E, Brown CB, Smith S, Edwards DL et al (1994) A randomized multicenter clinical trial comparing isosmolar Icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 46(2):496–503

CAS  PubMed  Google Scholar 

Krediet RT, Zweers MM, Ho-dac-Pannekeet MM, van der Wal AC, Smit W, Douma CE et al (1999) The effect of various dialysis solutions on peritoneal membrane viability. Perit Dial Int J Int Soc Perit Dial 19(Suppl 2):S257-266

Google Scholar 

Domenici A, Scabbia L, Sivo F, Falcone C, Punzo G, Menè P (2012) Determinants of sodium removal with tidal automated peritoneal dialysis. Adv Perit Dial Conf Perit Dial 28:16–20

Google Scholar 

Rodríguez-Carmona A, Fontán MP (2002) Sodium removal in patients undergoing CAPD and automated peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 22(6):705–713

Google Scholar 

Paniagua R, Ventura MD, Avila-Díaz M, Cisneros A, Vicenté-Martínez M, Furlong MD, García-González Z, Villanueva D, Orihuela O, Prado-Uribe MD, Alcántara G, Amato D (2009) Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients. Perit Dial Int. 29(4):422–32

CAS  PubMed  Google Scholar 

Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC et al (2003) Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 14(9):2338–2344

CAS  PubMed  Google Scholar 

Peers E (1997) Icodextrin plus glucose combinations for use in CAPD. Perit Dial Int J Int Soc Perit Dial 17(Suppl 2):S68-69

Google Scholar 

Jenkins SB, Wilkie ME (2003) An exploratory study of a novel peritoneal combination dialysate (136% glucose/75% icodextrin), demonstrating improved ultrafiltration compared to either component studied alone. Perit Dial Int J Int Soc Perit Dial. 23(5):475–80

Google Scholar 

Dallas F, Jenkins SB, Wilkie ME (2004) Enhanced ultrafiltration using 7.5% icodextrin/1.36% glucose combination dialysate: a pilot study. Perit Dial Int J Int Soc Perit Dial. 24(6):542–6

Google Scholar 

Freida P, Galach M, Divino Filho JC, Werynski A, Lindholm B (2007) Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell. Perit Dial Int J Int Soc Perit Dial 27(3):267–276

CAS  Google Scholar 

Freida P, Wilkie M, Jenkins S, Dallas F, Issad B (2008) The contribution of combined crystalloid and colloid osmosis to fluid and sodium management in peritoneal dialysis. Kidney Int 73:S102–S111

Google Scholar 

Freida P, Issad B, Dratwa M, Lobbedez T, Wu L, Leypoldt JK et al (2009) A combined crystalloid and colloid pd solution as a glucose-sparing strategy for volume control in high-transport apd patients: a prospective multicenter study. Perit Dial Int J Int Soc Perit Dial 29(4):433–442

CAS  Google Scholar 

Akonur A, Leypoldt JK (2011) Three-pore model predictions of 24-hour automated peritoneal dialysis therapy using bimodal solutions. Perit Dial Int 31(5):537–544

CAS  PubMed  Google Scholar 

Morelle J, Sow A, Fustin CA, Fillée C, Garcia-Lopez E, Lindholm B et al (2018) Mechanisms of crystalloid versus colloid osmosis across the peritoneal membrane. J Am Soc Nephrol 29(7):1875–1886

CAS  PubMed  PubMed Central  Google Scholar 

Rippe B, Levin L (2000) Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 57(6):2546–2556

CAS  PubMed  Google Scholar 

Oberg CM, Rippe B (2017) Optimizing automated peritoneal dialysis using an extended 3-pore model. Kidney Int Rep 2:943–951

PubMed  PubMed Central  Google Scholar 

Galach M, Werynski A, Waniewski J, Freida P, Lindholm B (2009) Kinetic analysis of peritoneal fluid and solute transport with combination of glucose and icodextrin as osmotic agents. Perit Dial Int 29(1):72–80

CAS  PubMed  Google Scholar 

R Core Team. R: a language and environment for statistical computing [Online]. Vienna, Austria: R Foundation for Statistical Computing; 2022. Available at: https://www.r-project.org/.

Grodstein GP, Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW (1981) Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int 19(4):564–567

CAS  PubMed  Google Scholar 

Nakayama M, Kasai K, Imai H, TRM-280 Study Group (2009) Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit Dial Int J Int Soc Perit Dial. 29(5):528–35

CAS  Google Scholar 

Rutkowski B, Tam P, Van Der Sande FM, Vychytil A, Schwenger V, Himmele R et al (2016) Low-sodium versus standard-sodium peritoneal dialysis solution in hypertensive patients: a randomized controlled trial. Am J Kidney Dis 67(5):753–761

CAS  PubMed  Google Scholar 

Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I et al (2009) The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transpl 24(5):1609–1617

CAS  Google Scholar 

Lanot A, Béchade C, Boyer A, Ficheux M, Lobbedez T (2021) Assisted peritoneal dialysis and transfer to haemodialysis: a cause-specific analysis with data from the RDPLF. Nephrol Dial Transpl 36(2):330–339

Google Scholar 

Qirjazi E, Salerno FR, Akbari A, Hur L, Penny J, Scholl T et al (2021) Tissue sodium concentrations in chronic kidney disease and dialysis patients by lower leg sodium-23 magnetic resonance imaging. Nephrol Dial Transpl 36(7):1234–1243

CAS  Google Scholar 

La Milia V, Pozzoni P, Virga G, Crepaldi M, Del Vecchio L, Andrulli S et al (2006) Peritoneal transport assessment by peritoneal equilibration test with 3.86% glucose: A long-term prospective evaluation. Kidney Int. 69(5):927–33

PubMed  Google Scholar 

Comments (0)

No login
gif