Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. https://doi.org/10.1016/j.tjem.2018.08.001. https://www.sciencedirect.com/science/article/pii/S2452247318302164
Alarcon, G., Binnie, C. D., Elwes, R. D., et al. (1995). Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalography and Clinical Neurophysiology, 94(5), 326–337. https://doi.org/10.1016/0013-4694(94)00286-t
Article CAS PubMed Google Scholar
Arroyo, S., & Uematsu, S. (1992). High-frequency EEG activity at the start of seizures. Journal of Clinical Neurophysiology, 9(3), 441. https://journals.lww.com/clinicalneurophys/Abstract/1992/07010/High_Frequency_EEG_Activity_at_the_Start_of.12.aspx?casa_token=96a5Mdx7W44AAAAA:0me0eZciDTYBFRNwIFHJ8TL_zhJIhAL_Y2pAc6DhZAt_S-LLcd3aogdvB3WPBU82mkwVekeBfLkpG3tLtIiXnIQ
Avramescu, S., & Timofeev, I. (2008). Synaptic strength modulation after cortical trauma: a role in epileptogenesis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(27), 6760–6772. https://doi.org/10.1523/JNEUROSCI.0643-08.2008
Article CAS PubMed Google Scholar
Bailey, N. W., Rogasch, N. C., Hoy, K. E., et al. (2017). Increased gamma connectivity during working memory retention following traumatic brain injury. Brain Injury, 31(3), 379–389. https://doi.org/10.1080/02699052.2016.1239273
Bazhenov, M., Timofeev, I., Steriade, M., et al. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. Journal of Neuroscience, 22(19), 8691–8704. https://doi.org/10.1523/JNEUROSCI.22-19-08691.2002. https://www.jneurosci.org/content/22/19/8691. publisher: Society for Neuroscience Section: ARTICLE
Bazhenov, M., Timofeev, I., Steriade, M., et al. (2004). Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology, 92(2), 1116–1132. https://doi.org/10.1152/jn.00529.2003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925854/
Bazhenov, M., Timofeev, I., Fröhlich, F., et al. (2008). Cellular and network mechanisms of electrographic seizures. Drug Discovery Today Disease Models, 5(1), 45–57. https://doi.org/10.1016/j.ddmod.2008.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633479/
Burrone, J., & Murthy, V. N. (2003). Synaptic gain control and homeostasis. Current Opinion in Neurobiology, 13(5), 560–567. https://doi.org/10.1016/j.conb.2003.09.007
Article CAS PubMed Google Scholar
Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001. https://academic.oup.com/book/11166
Chartrain, A. G., Yaeger, K., Feng, R., et al. (2017). Antiepileptics for post-traumatic seizure prophylaxis after traumatic brain injury. Current Pharmaceutical Design, 23(42), 6428–6441. https://doi.org/10.2174/1381612823666171031100139
Article CAS PubMed Google Scholar
Chauvette, S., Crochet, S., Volgushev, M., et al. (2011). Properties of slow oscillation during slow-wave sleep and anesthesia in cats. Journal of Neuroscience, 31(42), 14998–15008. https://doi.org/10.1523/JNEUROSCI.2339-11.2011. https://www.jneurosci.org/content/31/42/14998, publisher: Society for Neuroscience Section: Articles
Chauvette, S., Soltani, S., Seigneur, J., et al. (2016). In vivo models of cortical acquired epilepsy. Journal of Neuroscience Methods, 260, 185–201. https://doi.org/10.1016/j.jneumeth.2015.08.030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744568/
Cohen, I., Navarro, V., Clemenceau, S., et al. (2002). On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science (New York, NY), 298(5597), 1418–1421. https://doi.org/10.1126/science.1076510
Culic, M., Blanusa, L. M., Grbic, G., et al. (2005). Spectral analysis of cerebellar activity after acute brain injury in anesthetized rats. Acta Neurobiologiae Experimentalis, 65(1), 11–17.
Davenport, E. M., Urban, J. E., Vaughan, C., et al. (2022). MEG measured delta waves increase in adolescents after concussion. Brain and Behavior, 12(9), e2720. https://doi.org/10.1002/brb3.2720. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9480906/
Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2(6), 515–520. https://doi.org/10.1038/9165
Article CAS PubMed Google Scholar
Desai, N. S., Cudmore, R. H., Nelson, S. B., et al. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 5(8), 783–789. https://doi.org/10.1038/nn878
Article CAS PubMed Google Scholar
Dietzel, I., Heinemann, U., Hofmeier, G., et al. (1982). Stimulus-induced changes in extracellular Na+ and Cl- concentration in relation to changes in the size of the extracellular space. Experimental Brain Research, 46(1), 73–84. https://doi.org/10.1007/BF00238100
Article CAS PubMed Google Scholar
Dinner, D. (1993). Posttraumatic epilepsy. In The treatment of epilepsy: Principles (pp. 654–658)
Edwards, G., Zhao, J., Dash, P. K., et al. (2020). Traumatic brain injury induces tau aggregation and spreading. Journal of Neurotrauma, 37(1), 80–92. https://doi.org/10.1089/neu.2018.6348
Filatov, G., Krishnan, G. P., Rulkov, N. F., et al. (2011). Dynamics of epileptiform activity in mouse hippocampal slices. Journal of Biological Physics, 37(3), 347–360. https://doi.org/10.1007/s10867-011-9216-x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101328/
Fink, C. G., Gliske, S., Catoni, N., et al. (2015). Network mechanisms generating abnormal and normal hippocampal high-frequency oscillations: A computational analysis. eNeuro, 2(3), ENEURO.0024–15.2015. https://doi.org/10.1523/ENEURO.0024-15.2015
Franke, L. M., Walker, W. C., Hoke, K. W., et al. (2016). Distinction in EEG slow oscillations between chronic mild traumatic brain injury and PTSD. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 106, 21–29. https://doi.org/10.1016/j.ijpsycho.2016.05.010
Fröhlich, F., & Bazhenov, M. (2006). Coexistence of tonic firing and bursting in cortical neurons. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 74(3 Pt 1), 031922. https://doi.org/10.1103/PhysRevE.74.031922
Article CAS PubMed Google Scholar
Fröhlich, F., Bazhenov, M., Timofeev, I., et al. (2006). Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. The Journal of Neuroscience, 26(23), 6153–6162. https://doi.org/10.1523/JNEUROSCI.5509-05.2006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915766/
Fröhlich, F., Bazhenov, M., Iragui-Madoz, V., et al. (2008). Potassium dynamics in the epileptic cortex: New insights on an old topic. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 14(5), 422–433. https://doi.org/10.1177/1073858408317955
Article CAS PubMed Google Scholar
Fröhlich, F., Bazhenov, M., & Sejnowski, T. J. (2008). Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. The Journal of Neuroscience, 28(7), 1709–1720. https://doi.org/10.1523/JNEUROSCI.4263-07.2008. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.4263-07.2008
Frohlich, F., Sejnowski, T., & Bazhenov, M. (2010). Network bistability mediates spontaneous transitions between normal and pathological brain states. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 10734–43. https://doi.org/10.1523/JNEUROSCI.1239-10.2010
Gloor, P., Ball, G., & Schaul, N. (1977). Brain lesions that produce delta waves in the EEG. Neurology, 27(4), 326–333. https://doi.org/10.1212/wnl.27.4.326
Article CAS PubMed Google Scholar
González, O. C., Krishnan, G. P., Chauvette, S., et al. (2015). Modeling of age-dependent epileptogenesis by differential homeostatic synaptic scaling. The Journal of Neuroscience, 35(39), 13448–13462. https://doi.org/10.1523/JNEUROSCI.5038-14.2015. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5038-14.2015
González, O. C., Shiri, Z., Krishnan, G. P., et al. (2018). Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced Epileptiform synchronization. Neurobiology of Disease, 109(Pt A), 137–147. https://doi.org/10.1016/j.nbd.2017.10.011
Article CAS PubMed Google Scholar
González, O. C., Krishnan, G. P., Timofeev, I., et al. (2019). Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiology of Disease, 130, 104485. https://doi.org/10.1016/j.nbd.2019.104485. https://linkinghub.elsevier.com/retrieve/pii/S0969996119300403
Gosselin, N., Lassonde, M., Petit, D., et al. (2009). Sleep following sport-related concussions. Sleep Medicine, 10(1), 35–46. https://doi.org/10.1016/j.sleep.2007.11.023
Grabner, G., Janke, A. L., Budge, M. M., et al. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention, 9(Pt 2), 58–66. https://doi.org/10.1007/11866763_8
Grenier, F., Timofeev, I., & Steriade, M. (2003). Neocortical very fast oscillations (ripples, 80–200 Hz) during seizures: Intracellular correlates. Journal of Neurophysiology, 89(2), 841–852. https://doi.org/10.1152/jn.00420.2002
Guerriero, R. M., Morrissey, M. J., Loe, M., et al. (2022). Macroperiodic oscillations are associated with seizures following acquired brain injury in young children. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 39(7), 602–609. https://doi.org/10.1097/WNP.0000000000000828
Heinemann, U., & Lux, H. D. (1977). Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Research, 120(2), 231–249. https://doi.org/10.1016/0006-8993(77)90903-9
Article CAS PubMed Google Scholar
Holden, S. S., Grandi, F. C., Aboubakr, O., et al. (2021). Complement factor C1q mediates sleep spindle loss and epileptic spikes after mild brain injury. Science (New York, NY), 373(6560), eabj2685. https://doi.org/10.1126/science.abj2685
Houweling, A. R., Bazhenov, M., Timofeev, I., et al. (2005). Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cerebral Cortex, 15(6), 834–845. https://doi.org/10.1093/cercor/bhh184. http://academic.oup.com/cercor/article/15/6/834/495646/Homeostatic-Synaptic-Plasticity-Can-Explain
Huang, M. X., Huang, C. W., Robb, A., et al. (2014). MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. NeuroImage, 84, 585–604. https://doi.org/10.1016/j.neuroimage.2013.09.022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096863/
Huang, M. X., Nichols, S., Baker, D. G., et al. (2014). Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. NeuroImage: Clinical, 5, 109–119. https://doi.org/10.1016/j.nicl.2014.06.004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087185/
Huang, M. X., Nichols, S., Robb-Swan, A., et al. (2019). MEG working memory N-back task reveals functional deficits in combat-related mild traumatic brain injury. Cerebral Cortex, 29, 1953–1968. place: United Kingdom Publisher: Oxford University Press. https://doi.org/10.1093/cercor/bhy075
Huang, M. X., Huang, C. W., Harrington, D. L., et al. (2020). Marked increases in resting-state MEG gamma-band activity in combat-related mild traumatic brain injury. Cerebral Cortex, 30(1), 283–295. https://doi.org/10.1093/cercor/bhz087.
Comments (0)