Generation of albino C57BL/6J mice by CRISPR embryo editing of the mouse tyrosinase locus

Abu Alhaija A. A., Lone I. N., Sekeroglu E. O., Batur T., Angelov D., Dimitrov S. et al. 2024 Development of a mouse embryonic stem cell model for investigating the functions of the linker histone H1–4. FEBS Open Biol. 14, 309–321.

Article  CAS  Google Scholar 

Bennett Dorothy C. and Lamoreux M. L. 2003a The color loci of mice— a genetic century. Pigment Cell Res. 16, 333–344.

Article  CAS  PubMed  Google Scholar 

Bennett Dorothy C. and Lamoreux M. L. 2003b The color loci of mice–a genetic century. Pigment Cell Res. 16, 333–344.

Article  CAS  PubMed  Google Scholar 

Capecchi M. R. 1989 Altering the genome by homologous recombination. Science 244, 1288–1292.

Article  CAS  PubMed  Google Scholar 

Chen S., Lee B., Lee A. Y. F., Modzelewski A. J. and He L. 2016 Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291, 14457–14467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S., Sun S., Moonen D., Lee C., Lee A.Y.-F., Schaffer D. V. et al. 2019 CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 27, 3780-3789.e4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gurumurthy C. B., Takahashi G., Wada K., Miura H., Sato M. and Ohtsuka M. 2016 GONAD: a novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos. Curr. Protoc. Hum. Genet. 2016, 15.8.1-15.8.12.

Google Scholar 

Gurumurthy C. B., Sato M., Nakamura A., Inui M., Kawano N., Islam M. A. et al. 2019 Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 14, 2452–2482.

Article  CAS  PubMed  Google Scholar 

Huijbers I. J., Del Bravo J., Bin Ali R., Pritchard C., Braumuller T. M., van Miltenburg M. H. et al. 2015 Using the GEMM-ESC strategy to study gene function in mouse models. Nat. Protoc. 10, 1755–1785.

Article  CAS  PubMed  Google Scholar 

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A. and Charpentier E. 2012 A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon B. S., Haq A. K., Pomerantz S. H. and Halaban R. 1987 Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl. Acad. Sci. USA 84, 7473–7477.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Fur N., Kelsall S. R. and Mintz B. 1996 Base substitution at different alternative splice donor sites of the tyrosinase gene in murine albinism. Genomics 37, 245–248.

Article  PubMed  Google Scholar 

Le Q. A., Tanihara F., Wittayarat M., Namula Z., Sato Y., Lin Q. et al. 2021 Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Res. Notes 14, 7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin S., Staahl B. T., Alla R. K. and Doudna J. A. 2014 Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, https://doi.org/10.7554/eLife.04766.

Article  PubMed  PubMed Central  Google Scholar 

Ma Y., Chen W., Zhang X., Yu L., Dong W., Pan S. et al. 2016 Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biol. 13, 605–612.

Article  PubMed  PubMed Central  Google Scholar 

Maruyama T., Dougan S. K., Truttmann M. C., Bilate A. M., Ingram J. R. and Ploegh H. L. 2015 Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGonigle P. and Ruggeri B. 2014 Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 87, 162–171.

Article  CAS  PubMed  Google Scholar 

Mehravar M., Shirazi A., Nazari M. and Banan M. 2019 Mosaicism in CRISPR/Cas9-mediated genome editing. Dev. Biol. 445, 156–162.

Article  CAS  PubMed  Google Scholar 

Mizuno S., Dinh T. T. H., Kato K., Mizuno-Iijima S., Tanimoto Y., Daitoku Y. et al. 2014 Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm. Genome 25, 327–334.

Article  CAS  PubMed  Google Scholar 

Modzelewski A. J., Chen S., Willis B. J., Lloyd K. C. K., Wood J. A. and He L. 2018 Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc. 13, 1253–1274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohtsuka M., Sato M., Miura H., Takabayashi S., Matsuyama M., Koyano T. et al. 2018 i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 19, 25.

Article  PubMed  PubMed Central  Google Scholar 

Paquet D., Kwart D., Chen A., Sproul A., Jacob S., Teo S. et al. 2016 Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129.

Article  CAS  PubMed  Google Scholar 

Perlman R. L. 2016 Mouse models of human disease: an evolutionary perspective. Evol. Med. Public Health, https://doi.org/10.1093/emph/eow014.

Article  PubMed  PubMed Central  Google Scholar 

Qin W., Dion S. L., Kutny P. M., Zhang Y., Cheng A. W., Jillette N. L. et al. 2015 Efficient CRISPR/cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200, 423–430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richardson C. D., Ray G. J., DeWitt M. A., Curie G. L. and Corn J. E. 2016 Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344.

Article  CAS  PubMed  Google Scholar 

Sardiello M., Palmieri M., di Ronza A., Medina D. L., Valenza M., Gennarino V. A. et al. 2009 A gene network regulating lysosomal biogenesis and function. Science 325, 473–477.

Article  CAS  PubMed  Google Scholar 

Sharpless N. E. and DePinho R. A. 2006 The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754.

Article  CAS  PubMed  Google Scholar 

Sun X., Olivier A. K., Yi Y., Pope C. E., Hayden H. S., Liang B. et al. 2014 Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am. J. Pathol. 184, 1309–1322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takabayashi S., Aoshima T., Kabashima K., Aoto K., Ohtsuka M. and Sato M. 2018 i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats. Sci. Rep. 8, 12059.

Article  PubMed  PubMed Central  Google Scholar 

Takahashi G., Gurumurthy C. B., Wada K., Miura H., Sato M. and Ohtsuka M. 2015 GONAD: Genome-editing via oviductal nucleic acids delivery system: a novel microinjection independent genome engineering method in mice. Sci. Rep. 5, 11406.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif