Abu Alhaija A. A., Lone I. N., Sekeroglu E. O., Batur T., Angelov D., Dimitrov S. et al. 2024 Development of a mouse embryonic stem cell model for investigating the functions of the linker histone H1–4. FEBS Open Biol. 14, 309–321.
Bennett Dorothy C. and Lamoreux M. L. 2003a The color loci of mice— a genetic century. Pigment Cell Res. 16, 333–344.
Article CAS PubMed Google Scholar
Bennett Dorothy C. and Lamoreux M. L. 2003b The color loci of mice–a genetic century. Pigment Cell Res. 16, 333–344.
Article CAS PubMed Google Scholar
Capecchi M. R. 1989 Altering the genome by homologous recombination. Science 244, 1288–1292.
Article CAS PubMed Google Scholar
Chen S., Lee B., Lee A. Y. F., Modzelewski A. J. and He L. 2016 Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291, 14457–14467.
Article CAS PubMed PubMed Central Google Scholar
Chen S., Sun S., Moonen D., Lee C., Lee A.Y.-F., Schaffer D. V. et al. 2019 CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 27, 3780-3789.e4.
Article CAS PubMed PubMed Central Google Scholar
Gurumurthy C. B., Takahashi G., Wada K., Miura H., Sato M. and Ohtsuka M. 2016 GONAD: a novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos. Curr. Protoc. Hum. Genet. 2016, 15.8.1-15.8.12.
Gurumurthy C. B., Sato M., Nakamura A., Inui M., Kawano N., Islam M. A. et al. 2019 Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 14, 2452–2482.
Article CAS PubMed Google Scholar
Huijbers I. J., Del Bravo J., Bin Ali R., Pritchard C., Braumuller T. M., van Miltenburg M. H. et al. 2015 Using the GEMM-ESC strategy to study gene function in mouse models. Nat. Protoc. 10, 1755–1785.
Article CAS PubMed Google Scholar
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A. and Charpentier E. 2012 A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.
Article CAS PubMed PubMed Central Google Scholar
Kwon B. S., Haq A. K., Pomerantz S. H. and Halaban R. 1987 Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl. Acad. Sci. USA 84, 7473–7477.
Article CAS PubMed PubMed Central Google Scholar
Le Fur N., Kelsall S. R. and Mintz B. 1996 Base substitution at different alternative splice donor sites of the tyrosinase gene in murine albinism. Genomics 37, 245–248.
Le Q. A., Tanihara F., Wittayarat M., Namula Z., Sato Y., Lin Q. et al. 2021 Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Res. Notes 14, 7.
Article CAS PubMed PubMed Central Google Scholar
Lin S., Staahl B. T., Alla R. K. and Doudna J. A. 2014 Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, https://doi.org/10.7554/eLife.04766.
Article PubMed PubMed Central Google Scholar
Ma Y., Chen W., Zhang X., Yu L., Dong W., Pan S. et al. 2016 Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biol. 13, 605–612.
Article PubMed PubMed Central Google Scholar
Maruyama T., Dougan S. K., Truttmann M. C., Bilate A. M., Ingram J. R. and Ploegh H. L. 2015 Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542.
Article CAS PubMed PubMed Central Google Scholar
McGonigle P. and Ruggeri B. 2014 Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 87, 162–171.
Article CAS PubMed Google Scholar
Mehravar M., Shirazi A., Nazari M. and Banan M. 2019 Mosaicism in CRISPR/Cas9-mediated genome editing. Dev. Biol. 445, 156–162.
Article CAS PubMed Google Scholar
Mizuno S., Dinh T. T. H., Kato K., Mizuno-Iijima S., Tanimoto Y., Daitoku Y. et al. 2014 Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm. Genome 25, 327–334.
Article CAS PubMed Google Scholar
Modzelewski A. J., Chen S., Willis B. J., Lloyd K. C. K., Wood J. A. and He L. 2018 Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc. 13, 1253–1274.
Article CAS PubMed PubMed Central Google Scholar
Ohtsuka M., Sato M., Miura H., Takabayashi S., Matsuyama M., Koyano T. et al. 2018 i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 19, 25.
Article PubMed PubMed Central Google Scholar
Paquet D., Kwart D., Chen A., Sproul A., Jacob S., Teo S. et al. 2016 Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129.
Article CAS PubMed Google Scholar
Perlman R. L. 2016 Mouse models of human disease: an evolutionary perspective. Evol. Med. Public Health, https://doi.org/10.1093/emph/eow014.
Article PubMed PubMed Central Google Scholar
Qin W., Dion S. L., Kutny P. M., Zhang Y., Cheng A. W., Jillette N. L. et al. 2015 Efficient CRISPR/cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200, 423–430.
Article CAS PubMed PubMed Central Google Scholar
Richardson C. D., Ray G. J., DeWitt M. A., Curie G. L. and Corn J. E. 2016 Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344.
Article CAS PubMed Google Scholar
Sardiello M., Palmieri M., di Ronza A., Medina D. L., Valenza M., Gennarino V. A. et al. 2009 A gene network regulating lysosomal biogenesis and function. Science 325, 473–477.
Article CAS PubMed Google Scholar
Sharpless N. E. and DePinho R. A. 2006 The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754.
Article CAS PubMed Google Scholar
Sun X., Olivier A. K., Yi Y., Pope C. E., Hayden H. S., Liang B. et al. 2014 Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am. J. Pathol. 184, 1309–1322.
Article CAS PubMed PubMed Central Google Scholar
Takabayashi S., Aoshima T., Kabashima K., Aoto K., Ohtsuka M. and Sato M. 2018 i-GONAD (improved genome-editing via oviductal nucleic acids delivery), a convenient in vivo tool to produce genome-edited rats. Sci. Rep. 8, 12059.
Article PubMed PubMed Central Google Scholar
Takahashi G., Gurumurthy C. B., Wada K., Miura H., Sato M. and Ohtsuka M. 2015 GONAD: Genome-editing via oviductal nucleic acids delivery system: a novel microinjection independent genome engineering method in mice. Sci. Rep. 5, 11406.
Comments (0)