Andersen JL, Klitgaard H, Saltin B (1994) Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 151(2):135–142. https://doi.org/10.1111/j.1748-1716.1994.tb09730.x
Article CAS PubMed Google Scholar
Baker JS, McCormick MC, Robergs RA (2010) Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab 2010:905612. https://doi.org/10.1155/2010/905612
Article CAS PubMed PubMed Central Google Scholar
Beneke R, Hütler M, Jung M, Leithäuser RM (2005) Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol 99(2):499–504. https://doi.org/10.1152/japplphysiol.00062.2005
Article CAS PubMed Google Scholar
Beneke R, Jumah MD, Leithäuser RM (2007) Modelling the lactate response to short-term all out exercise. Dyn Med 6:10. https://doi.org/10.1186/1476-5918-6-10
Article CAS PubMed PubMed Central Google Scholar
Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495(2):573–586. https://doi.org/10.1113/jphysiol.1996.sp021617
Article CAS PubMed PubMed Central Google Scholar
Bundle MW, Weyand PG (2012) Sprint exercise performance: does metabolic power matter? Exerc Sport Sci Rev 40(3):174–182. https://doi.org/10.1097/JES.0b013e318258e1c1
Burke ER, Fleck S, Dickson T (1981) Post-competition blood lactate concentrations in competitive track cyclists. Br J Sports Med 15(4):242–245. https://doi.org/10.1136/bjsm.15.4.242
Article CAS PubMed PubMed Central Google Scholar
Chung Y, Sharman R, Carlsen R, Unger SW, Larson D, Jue T (1998) Metabolic fluctuation during a muscle contraction cycle. Am J Physiol 274(3):C846–C852. https://doi.org/10.1152/ajpcell.1998.274.3.C846
Article CAS PubMed Google Scholar
Cohen, J (1988) Statistical power analysis for the behavioral sciences (2 edn). Erlbaum. http://www.loc.gov/catdir/enhancements/fy0731/88012110-d.html
Crowther GJ, Carey MF, Kemper WF, Conley KE (2002) Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol Endocrinol Metab 282(1):E67-73. https://doi.org/10.1152/ajpendo.2002.282.1.E67
Article CAS PubMed Google Scholar
di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222. https://doi.org/10.1007/BFb0035266
Duffield R, Dawson B, Goodman C (2004) Energy system contribution to 100-m and 200-m track running events. J Sci Med Sport 7(3):302–313. https://doi.org/10.1016/s1440-2440(04)80025-2
Article CAS PubMed Google Scholar
Duffield R, Dawson B, Goodman C (2005) Energy system contribution to 400-metre and 800-metre track running. J Sports Sci 23(3):299–307. https://doi.org/10.1080/02640410410001730043
Dunst AK, Grüneberger R (2021) A novel approach of modelling and predicting track cycling sprint performance. Appl Sci 11(24):12098. https://doi.org/10.3390/app112412098
Dunst AK, Grüneberger R, Holmberg H-C (2021) Modeling optimal cadence as a function of time during maximal sprint exercises can improve performance by elite track cyclists. Appl Sci 11(24):12105. https://doi.org/10.3390/app112412105
Dunst AK, Hesse C, Feldmann A, Holmberg HC (2023a) A novel approach to determining the alactic time span in connection with assessment of the maximal rate of lactate accumulation in elite track cyclists. Int J Sports Physiol Perform 18(2):157–163. https://doi.org/10.1123/ijspp.2021-0464
Dunst AK, Manunzio C, Feldmann A, Hesse C (2023b) Applications of near-infrared spectroscopy in “anaerobic” diagnostics - SmO2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maximal pedalling rate. Biol Sport 40(4):1019–1031. https://doi.org/10.5114/biolsport.2023.122481
Article PubMed PubMed Central Google Scholar
Dunst AK, Hesse C, Ueberschär O (2024) Understanding optimal cadence dynamics: a systematic analysis of the power-velocity relationship in track cyclists with increasing exercise intensity. Front Physiol 15:1343601. https://doi.org/10.3389/fphys.2024.1343601
Article PubMed PubMed Central Google Scholar
Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E (1999) Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol 87(4):1326–1332. https://doi.org/10.1152/jappl.1999.87.4.1326
Essén-Gustavsson B, Henriksson J (1984) Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise. Acta Physiol Scand 120(4):505–515. https://doi.org/10.1111/j.1748-1716.1984.tb07414.xvxvc
Fujitsuka N, Yamamoto T, Ohkuwa T, Saito M, Miyamura M (1982) Peak blood lactate after short periods of maximal treadmill running. Eur J Appl Physiol 48(3):289–296. https://doi.org/10.1007/BF00430218
Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31(10):725–741. https://doi.org/10.2165/00007256-200131100-00003
Article CAS PubMed Google Scholar
Gupta S, Stanula A, Goswami A (2021) Peak blood lactate concentration and its arrival time following different track running events in under-20 male track athletes. Int J Sports Physiol Perform 16(11):1625–1633. https://doi.org/10.1123/ijspp.2020-0685
Gupta S, Stanula A, Goswami A, Adhikari A, Singh A, Ostrowski A (2022) Relationship between cycling speed and blood lactate level at various intervals following 1-km time trial cycling. J Kinesiol Exerc Sci 32(97):29–36. https://doi.org/10.5604/01.3001.0015.8589
Haase R, Dunst AK, Nitzsche N (2024) The influence of pedaling frequency on blood lactate accumulation in cycling sprints. Int J Sports Med 45(8):608–615. https://doi.org/10.1055/a-2255-5254
Article CAS PubMed Google Scholar
Hansen EA, Andersen JL, Nielsen JS, Sjøgaard G (2002) Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 176(3):185–194. https://doi.org/10.1046/j.1365-201X.2002.01032.x
Article CAS PubMed Google Scholar
Hauser T, Adam J, Schulz H (2014) Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model 11:25. https://doi.org/10.1186/1742-4682-11-25
Article CAS PubMed PubMed Central Google Scholar
Hautier CA, Wouassi D, Arsac LM, Bitanga E, Thiriet P, Lacour JR (1994) Relationships between postcompetition blood lactate concentration and average running velocity over 100-m and 200-m races. Eur J Appl Physiol 68(6):508–513. https://doi.org/10.1007/BF00599521
Hautier CA, Linossier MT, Belli A, Lacour JR, Arsac LM (1996) Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur J Appl Physiol 74(1–2):114–118. https://doi.org/10.1007/BF00376503
Heck H, Schulz H, Bartmus U (2003) Diagnostics of anaerobic power and capacity. Eur J Sport Sci 3(3):1–23. https://doi.org/10.1080/17461390300073302
Comments (0)