Newman, P. A., Oman, L. D., Douglass, A. R., Fleming, E. L., Frith, S. M., Hurwitz, M. M., Kawa, S. R., Jackman, C. H., Krotkov, N. A., Nash, E. R., Nielsen, J. E., Pawson, S., Stolarski, R. S., & Velders, G. J. M. (2009). What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmospheric Chemistry and Physics, 9(6), 2113–2128. https://doi.org/10.5194/acp-9-2113-2009
McKenzie, R., Bernhard, G., Liley, B., Disterhoft, P., Rhodes, S., Bais, A., Morgenstern, O., Newman, P., Oman, L., Brogniez, C., & Simic, S. (2019). Success of Montreal protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models. Scientific Reports, 9(1), 12332. https://doi.org/10.1038/s41598-019-48625-z
Article CAS PubMed PubMed Central Google Scholar
Zilker, F., Sukhodolov, T., Chiodo, G., Friedel, M., Egorova, T., Rozanov, E., Sedlacek, J., Seeber, S., & Peter, T. (2023). Stratospherically induced circulation changes under the extreme conditions of the no-Montreal-protocol scenario. Atmospheric Chemistry and Physics, 23(20), 13387–13411. https://doi.org/10.5194/acp-23-13387-2023
Egorova, T., Sedlacek, J., Sukhodolov, T., Karagodin-Doyennel, A., Zilker, F., & Rozanov, E. (2023). Montreal protocol’s impact on the ozone layer and climate. Atmospheric Chemistry and Physics, 23(9), 5135–5147. https://doi.org/10.5194/acp-23-5135-2023
WMO. (2022). Scientific Assessment of Ozone Depletion: 2022. Gaw report no. 278, 509 pp., WMO; geneva. https://ozone.unep.org/science/assessment/sap
Goyal, R., England, M. H., Sen Gupta, A., & Jucker, M. (2019). Reduction in surface climate change achieved by the 1987 Montreal protocol. Environmental Research Letters, 14(12), 124041. https://doi.org/10.1088/1748-9326/ab4874
Bernhard, G. H., Bais, A. F., Aucamp, P. J., Klekociuk, A. R., Liley, J. B., & McKenzie, R. L. (2023). Stratospheric ozone, UV-radiation, and climate interactions. Photochemical & Photobiological Sciences, 22(5), 937–989. https://doi.org/10.1007/s43630-023-00371-y
Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jockel, P., & Deushi, M. (2019). Ozone-climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18(3), 602–640. https://doi.org/10.1039/c8pp90059k
Yamamoto, A. L. C., Corrêa, M. P., Torres, R. R., Martins, F. B., & Godin-Beekmann, S. (2024). Projected changes in ultraviolet index and UV doses over the twenty-first century: Impacts of ozone and aerosols from CMIP6. Photochemical & Photobiological Sciences, 23(7), 1279–1294. https://doi.org/10.1007/s43630-024-00594-7
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., … Wang, R. H. J. (2020). The shared Socio-Economic Pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
Zhang, H., Hu, D., & Han, T. (2024). Influence of Arctic stratospheric ozone in March on precipitation in eastern China during the boreal spring. Atmospheric Research, 303, 107321. https://doi.org/10.1016/j.atmosres.2024.107321
Hu, D., Zhang, Z., & Guan, Z. (2024). Drying over eastern China driven by the depletion of Arctic stratospheric ozone during boreal spring. Geophysical Research Letters, 51(8), e2023GL108008. https://doi.org/10.1029/2023GL108008
von der Gathen, P., Kivi, R., Wohltmann, I., Salawitch, R. J., & Rex, M. (2021). Climate change favours large seasonal loss of Arctic ozone. Nature Communications, 12(1), 1–17. https://doi.org/10.1038/s41467-021-24089-6
Polvani, L. M., Keeble, J., Banerjee, A., Checa-Garcia, R., Chiodo, G., Rieder, H. E., & Rosenlof, K. H. (2023). No evidence of worsening Arctic springtime ozone losses over the 21st century. Nature Communications, 14(1), 1608. https://doi.org/10.1038/s41467-023-37134-3
Article CAS PubMed PubMed Central Google Scholar
von der Gathen, P., Kivi, R., Wohltmann, I., Salawitch, R. J., & Rex, M. (2023). Reply to: No evidence of worsening Arctic springtime ozone losses over the 21st century. Nature Communications, 14(1), 1609. https://doi.org/10.1038/s41467-023-37135-2
Article CAS PubMed PubMed Central Google Scholar
Friedel, M., Chiodo, G., Sukhodolov, T., Keeble, J., Peter, T., Seeber, S., Stenke, A., Akiyoshi, H., Rozanov, E., Plummer, D., Jöckel, P., Zeng, G., Morgenstern, O., & Josse, B. (2023). Weakening of springtime Arctic ozone depletion with climate change. Atmospheric Chemistry and Physics, 23(17), 10235–10254. https://doi.org/10.5194/acp-23-10235-2023
Manney, G. L., Livesey, N. J., Santee, M. L., Froidevaux, L., Lambert, A., Lawrence, Z. D., Millán, L. F., Neu, J. L., Read, W. G., Schwartz, M. J., & Fuller, R. A. (2020). Record-low Arctic stratospheric ozone in 2020: Mls observations of chemical processes and comparisons with previous extreme winters. Geophysical Research Letters, 47(16), e2020GL089063. https://doi.org/10.1029/2020gl089063
Bernhard, G. H., Fioletov, V. E., Grooß, J. U., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Müller, R., & Svendby, T. (2020). Record-breaking increases in Arctic solar ultraviolet radiation caused by exceptionally large ozone depletion in 2020. Geophysical Research Letters, 47(24), e2020GL090844. https://doi.org/10.1029/2020gl090844
Article PubMed PubMed Central Google Scholar
Chiodo, G., Friedel, M., Seeber, S., Domeisen, D., Stenke, A., Sukhodolov, T., & Zilker, F. (2023). The influence of future changes in springtime Arctic ozone on stratospheric and surface climate. Atmospheric Chemistry and Physics, 23(18), 10451–10472. https://doi.org/10.5194/acp-23-10451-2023
Hartmann, D. L. (2022). The Antarctic ozone hole and the pattern effect on climate sensitivity. Proceedings of the National Academy of Sciences, 119(35), e2207889119. https://doi.org/10.1073/pnas.2207889119
Dong, Y., Polvani, L. M., & Bonan, D. B. (2023). Recent multi-decadal Southern Ocean surface cooling unlikely caused by Southern Annular Mode trends. Geophysical Research Letters, 50(23), e2023GL106142. https://doi.org/10.1029/2023GL106142
Son, S.-W., Han, B.-R., Garfinkel, C. I., Kim, S.-Y., Park, R., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Dhomse, S. S., Hardiman, S. C., Jöckel, P., Kinnison, D., Michou, M., Morgenstern, O., O’Connor, F. M., … Zeng, G. (2018). Tropospheric jet response to Antarctic ozone depletion: An update with chemistry-climate model initiative (CCMI) models. Environmental Research Letters, 13(5), 054024. https://doi.org/10.1088/1748-9326/aabf21
Fleming, E. L., Newman, P. A., Liang, Q., & Oman, L. D. (2024). Stratospheric temperature and ozone impacts of the Hunga Tonga–Hunga Ha’apai water vapor injection. Journal of Geophysical Research: Atmospheres, 129(1), e2023JD039298. https://doi.org/10.1029/2023JD039298
Millán, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., Pumphrey, H. C., Manney, G. L., Wang, Y., Su, H., Wu, L., Read, W. G., & Froidevaux, L. (2022). The Hunga Tonga–Hunga Ha’apai hydration of the stratosphere. Geophysical Research Letters, 49(13), e2022GL099381. https://doi.org/10.1029/2022gl099381
Khaykin, S., Podglajen, A., Ploeger, F., Grooß, J.-U., Tence, F., Bekki, S., Khlopenkov, K., Bedka, K., Rieger, L., Baron, A., Godin-Beekmann, S., Legras, B., Sellitto, P., Sakai, T., Barnes, J., Uchino, O., Morino, I., Nagai, T., Wing, R., … Ravetta, F. (2022). Global perturbation of stratospheric water and aerosol burden by Hunga eruption. Communications Earth & Environment, 3(1), 316. https://doi.org/10.1038/s43247-022-00652-x
Evan, S., Brioude, J., Rosenlof, K. H., Gao, R.-S., Portmann, R. W., Zhu, Y., Volkamer, R., Lee, C. F., Metzger, J.-M., Lamy, K., Walter, P., Alvarez, S. L., Flynn, J. H., Asher, E., Todt, M., Davis, S. M., Thornberry, T., Vömel, H., Wienhold, F. G., Read, W. G. (2023). Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga eruption. Science, 382 (6668), 1–7. https://doi.org/10.1126/science.adg2551
Zhu, Y., Portmann, R. W., Kinnison, D., Toon, O. B., Millán, L., Zhang, J., Vömel, H., Tilmes, S., Bardeen, C. G., Wang, X., Evan, S., Randel, W. J., & Rosenlof, K. H. (2023). Stratospheric ozone depletion inside the volcanic plume shortly after the 2022 Hunga Tonga eruption. Atmospheric Chemistry and Physics, 23(20), 13355–13367. https://doi.org/10.5194/acp-23-13355-2023
Manney, G. L., Santee, M. L., Lambert, A., Millán, L. F., Minschwaner, K., Werner, F., Lawrence, Z. D., Read, W. G., Livesey, N. J., & Wang, T. (2023). Siege in the southern stratosphere: Hunga Tonga–Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophysical Research Letters, 50(14), e2023GL103855. https://doi.org/10.1029/2023gl103855
Wohltmann, I., Santee, M. L., Manney, G. L., & Millán, L. F. (2024). The chemical effect of increased water vapor from the Hunga Tonga–Hunga Ha’apai eruption on the Antarctic ozone hole. Geophysical Research Letters, 51(4), e2023GL106980. https://doi.org/10.1029/2023GL106980
Santee, M. L., Manney, G. L., Lambert, A., Millán, L. F., Livesey, N. J., Pitts, M. C., Froidevaux, L., Read, W. G.,
Comments (0)