EEG reveals brain network alterations in chronic aphasia during natural speech listening

Gialanella, B., Bertolinelli, M., Lissi, M. & Prometti, P. Predicting outcome after stroke: the role of aphasia. 33, 122–129 (2010). https://doi.org/10.3109/09638288.2010.488712.

Flowers, H. L. et al. Poststroke aphasia frequency, recovery, and outcomes: A systematic review and meta-analysis. Arch Phys Med Rehabil 97, 2188-2201.e8 (2016).

Article  PubMed  MATH  Google Scholar 

Saur, D. et al. Dynamics of language reorganization after stroke. Brain 129, 1371–1384 (2006).

Article  PubMed  MATH  Google Scholar 

Li, R., Mukadam, N. & Kiran, S. Functional MRI evidence for reorganization of language networks after stroke. Handb Clin Neurol 185, 131–150 (2022).

Article  PubMed  MATH  Google Scholar 

Hartwigsen, G. & Saur, D. Neuroimaging of stroke recovery from aphasia: Insights into plasticity of the human language network. Neuroimage 190, 14–31 (2019).

Article  PubMed  Google Scholar 

Siegel, J. S. et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA 113, E4367–E4376 (2016).

Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

Sims, J. A. et al. The relationships between the amount of spared tissue, percent signal change, and accuracy in semantic processing in aphasia. Neuropsychologia 84, 113–126 (2016).

Article  PubMed  PubMed Central  MATH  Google Scholar 

Kiran, S. & Thompson, C. K. Neuroplasticity of language networks in aphasia: Advances, updates, and future challenges. Front Neurol 10 (2019).

Brownsett, S. L. E. et al. Cognitive control and its impact on recovery from aphasic stroke. Brain 137, 242–254 (2014).

Article  PubMed  Google Scholar 

Chen, X. et al. Disrupted brain connectivity networks in aphasia revealed by resting-state fMRI. Front Aging Neurosci 13, 1–10 (2021).

Google Scholar 

Zhu, Y. et al. Disrupted brain connectivity networks in acute ischemic stroke patients. Brain Imaging Behav 11, 444–453 (2017).

Article  PubMed  MATH  Google Scholar 

Taylor, P. N. et al. Normative brain mapping of interictal intracranial EEG to localize epileptogenic tissue. Brain 145, 939–949 (2022).

Article  PubMed  PubMed Central  MATH  Google Scholar 

Acharya, U. R., Vinitha Sree, S., Swapna, G., Martis, R. J. & Suri, J. S. Automated EEG analysis of epilepsy: A review. Knowl. Based Syst. 45, 147–165 (2013).

Canuet, L. et al. Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS One 6, e27863 (2011).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shin, Y. W., O’Donnell, B. F., Youn, S. & Kwon, J. S. Gamma oscillation in schizophrenia. Psychiatry Investig 8, 288 (2011).

Article  PubMed  PubMed Central  MATH  Google Scholar 

Mehraram, R. et al. Functional and structural brain network correlates of visual hallucinations in Lewy body dementia. Brain 2190–2205 (2022) https://doi.org/10.1093/brain/awac094.

Peraza, L. R. et al. Electroencephalographic derived network differences in Lewy body dementia compared to Alzheimer’s disease patients. Sci Rep 8, 4637 (2018).

Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

Schumacher, J. et al. EEG alpha reactivity and cholinergic system integrity in Lewy body dementia and Alzheimer’s disease. Alzheimers Res Ther 12, 1–12 (2020).

Article  MATH  Google Scholar 

Dalton, S. G. H., Cavanagh, J. F. & Richardson, J. D. Spectral resting-state EEG (rsEEG) in chronic aphasia is reliable, sensitive, and correlates with functional behavior. Front Hum Neurosci 15, 1–16 (2021).

Article  Google Scholar 

Bentes, C. et al. Quantitative EEG and functional outcome following acute ischemic stroke. Clin Neurophysiol 129, 1680–1687 (2018).

Article  PubMed  MATH  Google Scholar 

Spironelli, C. & Angrilli, A. Brain plasticity in aphasic patients: Intra- and inter-hemispheric reorganisation of the whole linguistic network probed by N150 and N350 components. Sci Rep 5, 1–14 (2015).

Article  Google Scholar 

Behroozmand, R., Bonilha, L., Rorden, C., Hickok, G. & Fridriksson, J. Neural correlates of impaired vocal feedback control in post-stroke aphasia. Neuroimage 250, 118938 (2022).

Article  PubMed  Google Scholar 

Hagoort, P., Brown, C. M. & Swaab, T. Y. Lexical—semantic event–related potential effects in patients with left hemisphere lesions and aphasia, and patients with right hemisphere lesions without aphasia. Brain 119, 627–649 (1996).

Article  PubMed  Google Scholar 

Pulvermüller, F., Mohr, B. & Lutzenberger, W. Neurophysiological correlates of word and pseudo-word processing in well-recovered aphasics and patients with right-hemispheric stroke. Psychophysiology 41, 584–591 (2004).

Article  PubMed  MATH  Google Scholar 

Dauwan, M. et al. EEG-directed connectivity from posterior brain regions is decreased in dementia with Lewy bodies: A comparison with Alzheimer’s disease and controls. Neurobiol Aging 41, 122–129 (2016).

Article  PubMed  Google Scholar 

Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41, 1110–1117 (2011).

Article  CAS  PubMed  MATH  Google Scholar 

Moran, R., Pinotsis, D. & Friston, K. Neural masses and fields in dynamic causal modeling. Front. Comput. Neurosci. 7, (2013).

Bhattacharya, B. sen, Coyle, D. & Maguire, L. P. A thalamo–cortico–thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Netw. 24, 631–645 (2011).

Florin, E., Gross, J., Pfeifer, J., Fink, G. R. & Timmermann, L. The effect of filtering on Granger causality based multivariate causality measures. Neuroimage 50, 577–588 (2010).

Article  PubMed  Google Scholar 

Soleimani, B. et al. NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis. Neuroimage 260, 119496 (2022).

Article  PubMed  MATH  Google Scholar 

Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F. & Pennartz, C. M. A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011).

Article  PubMed  MATH  Google Scholar 

Mehraram, R. et al. Weighted network measures reveal differences between dementia types: An EEG study. Hum Brain Mapp 41, 1573–1590 (2020).

Article  PubMed  MATH  Google Scholar 

Hill, A. T. et al. Resting-state electroencephalographic functional network alterations in major depressive disorder following magnetic seizure therapy. Prog Neuropsychopharmacol Biol Psychiatry 108, 110082 (2021).

Article  PubMed  Google Scholar 

Abbas, A. K., Azemi, G., Amiri, S., Ravanshadi, S. & Omidvarnia, A. Effective connectivity in brain networks estimated using EEG signals is altered in children with ADHD. Comput Biol Med 134, 104515 (2021).

Article  PubMed  Google Scholar 

Caliandro, P. et al. Small-world characteristics of cortical connectivity changes in acute stroke. Neurorehabil Neural Repair 31, 81–94 (2017).

Article  PubMed  Google Scholar 

Nicolo, P. et al. Coherent neural oscillations predict future motor and language improvement after stroke. Brain 138, 3048–3060 (2015).

Article  PubMed  MATH  Google Scholar 

Shah-Basak, P. et al. Electrophysiological connectivity markers of preserved language functions in post-stroke aphasia. Neuroimage Clin 34, 103036 (2022).

Article  PubMed  PubMed Central  MATH  Google Scholar 

Snyder, D. B., Schmit, B. D., Hyngstrom, A. S. & Beardsley, S. A. Electroencephalography resting-state networks in people with Stroke. Brain Behav 11, 18–35 (2021).

Comments (0)

No login
gif