Lee SG, Ha J-W, Sohn E-H, Park IJ, Lee S-B. Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films. Appl Surf Sci. 2016;390:339–45. https://doi.org/10.1016/j.apsusc.2016.08.090.
Wang F, Fan X, Pi D, Wang M. Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles. Solid State Commun. 2005;133(12):775–9. https://doi.org/10.1016/j.ssc.2005.01.014.
Dong N-N, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, et al. NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano. 2011;5(11):8665–71. https://doi.org/10.1021/nn202490m.
Article CAS PubMed Google Scholar
Coetsee E, Yagoub M, Swart H. Near infrared fluorescence properties of Tb4+ and Tb3+ inter-conversion states in CaF2: Yb3+ nanocrystals. Mater Res Bull. 2023;166:112350. https://doi.org/10.1016/j.materresbull.2023.112350.
Camy P, Doualan J, Renard S, Braud A, Ménard V, Moncorgé R. Tm3+: CaF2 for 1.9 μm laser operation. Optics Commun. 2004;236(4–6):395–402. https://doi.org/10.1016/j.optcom.2004.03.055.
Luo K, Chen H, Zhou Q, Yan Z, Su Z, Li K. A sensitive and visual molecularly imprinted fluorescent sensor incorporating CaF2 quantum dots and β-cyclodextrins for 5-hydroxymethylfurfural detection. Anal Chim Acta. 2020;1124:113–20. https://doi.org/10.1016/j.aca.2020.05.006.
Article CAS PubMed Google Scholar
Huang Y, Zhai J, Liu L, Shang Z, Zhang X, Huang H, et al. Recent developments on nanomaterial probes for detection of pesticide residues: a review. Anal Chim Acta. 2022;1215:339974. https://doi.org/10.1016/j.aca.2022.339974.
Article CAS PubMed Google Scholar
Bai L, Ye T, Si W, Yu J, Yuan M, Cao H, et al. Molecular imprinted polymer capped luminescent metal-organic framework for the determination of pyrethroids and its metabolite. Microchem J. 2023;193:109047. https://doi.org/10.1016/j.microc.2023.109047.
Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano. 2009;3(3):744–52. https://doi.org/10.1021/nn900001q.
Article CAS PubMed Google Scholar
Yu L, Yang Y, Jiang X, Li Y, He X, Chen L, et al. A self-calibrating ratiometric fluorescence sensor with photonic crystal-based signal amplification for the detection of tetracycline in food. Food Chem. 2024;451:139418. https://doi.org/10.1016/j.foodchem.2024.139418.
Article CAS PubMed Google Scholar
He H, Muhammad P, Guo Z, Peng Q, Lu H, Liu Z. Controllably prepared molecularly imprinted core-shell plasmonic nanostructure for plasmon-enhanced fluorescence assay. Biosens Bioelectron. 2019;146:111733. https://doi.org/10.1016/j.bios.2019.111733.
Article CAS PubMed Google Scholar
Lin J-S, Radjenovic PM, Jin H, Li J-F. Plasmonic core–shell nanoparticle enhanced spectroscopies for surface analysis. ACS Publ. 2021;https://doi.org/10.1021/acs.analchem.1c00233.
Xu J, Zhang YJ, Yin H, Zhong HL, Su M, Tian ZQ, et al. Shell-isolated nanoparticle-enhanced Raman and fluorescence spectroscopies: synthesis and applications. Adv Optic Mater. 2018;6(4):1701069. https://doi.org/10.1002/adom.201701069.
Yuan H, Khatua S, Zijlstra P, Yorulmaz M, Orrit M. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew Chem, Int Ed. 2013;52(4):1217–21. https://doi.org/10.1002/anie.201208125.
Li J-F, Li C-Y, Aroca RF. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev. 2017;46(13):3962–79. https://doi.org/10.1039/C7CS00169J.
Article CAS PubMed Google Scholar
Li C, Zhu Y, Zhang X, Yang X, Li C. Metal-enhanced fluorescence of carbon dots adsorbed Ag@ SiO2 core-shell nanoparticles. RSC Adv. 2012;2(5):1765–8. https://doi.org/10.1039/C2RA01032A.
Ding S-J, Liang S, Nan F, Liu X-L, Wang J-H, Zhou L, et al. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots. Nanoscale. 2015;7(5):1970–6. https://doi.org/10.1039/C4NR05731G.
Article CAS PubMed Google Scholar
Li CR, Lei YL, Li H, Ni M, Yang DR, Xie XY, et al. Suppressing non-radiative relaxation through single-atom metal modification for enhanced fluorescence efficiency in molybdenum disulfide quantum dots. Angew Chem Int Ed. 2022;61(34):e202207300. https://doi.org/10.1002/anie.202207300.
Xu J, Morton W, Jones D, Tabish TA, Ryan MP, Xie F. Significant quantum yield enhancement for near infrared fluorescence dyes by silica templated silver nanorods. Appl Phys Rev. 2022;9(3). https://doi.org/10.1063/5.0082187.
Gahlaut SK, Pathak A, Gupta BD. Recent advances in silver nanostructured substrates for plasmonic sensors. Biosensors. 2022;12(9):713. https://doi.org/10.3390/bios12090713.
Article CAS PubMed PubMed Central Google Scholar
Zhang YJ, Radjenovic PM, Zhou XS, Zhang H, Yao JL, Li JF. Plasmonic core–shell nanomaterials and their applications in spectroscopies. Adv Mater. 2021;33(50):2005900. https://doi.org/10.1002/adma.202005900.
Jalali HB, De Trizio L, Manna L, Di Stasio F. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chem Soc Rev. 2022;51(24):9861–81. https://doi.org/10.1039/D2CS00490A.
Rahimi F, Anbia M, Farahi M. Aqueous synthesis of L-methionine capped PbS quantum dots for sensitive detection and quantification of arsenic (III). J Photochem Photobiol, A. 2021;417:113361. https://doi.org/10.1016/j.jphotochem.2021.113361.
Christoffoleti PJ, Figueiredo MRAd, Peres LEP, Nissen S, Gaines T. Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances. Scientia Agricola. 2015;72(4):356–62. https://doi.org/10.1590/0103-9016-2014-0360.
López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Design of a novel hapten and development of a sensitive monoclonal immunoassay for dicamba analysis in environmental water samples. Sci Total Environ. 2022;848:157770. https://doi.org/10.1016/j.scitotenv.2022.157770.
Article CAS PubMed Google Scholar
Riter LS, Pai N, Vieira BC, MacInnes A, Reiss R, Hapeman CJ, et al. Conversations about the future of dicamba: the science behind off-target movement. J Agric Food Chem. 2021;69(48):14435–44. https://doi.org/10.1021/acs.jafc.1c05589.
Article CAS PubMed Google Scholar
Zhu L, Li W, Zha J, Wang Z. Dicamba affects sex steroid hormone level and mRNA expression of related genes in adult rare minnow (Gobiocypris rarus) at environmentally relevant concentrations. Environ Toxicol. 2015;30(6):693–703. https://doi.org/10.1002/tox.21947.
Article CAS PubMed Google Scholar
Attademo AM, Lajmanovich RC, Peltzer PM, Boccioni APC, Martinuzzi C, Simonielo F, et al. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: an underestimated toxicity risk? Environ Sci Pollut Res. 2021;28:31962–74. https://doi.org/10.1007/s11356-021-13000-x.
González NV, Soloneski S, Larramendy ML. The chlorophenoxy herbicide dicamba and its commercial formulation banvel® induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutat Res/Gen Toxicol Environ Mutagen. 2007;634(1–2):60–8. https://doi.org/10.1016/j.mrgentox.2007.06.001.
Authority EFS. Scientific support for preparing an EU position for the 52nd Session of the Codex Committee on Pesticide Residues (CCPR). EFSA J. 2021;19(8). https://doi.org/10.2903/j.efsa.2021.6766.
Wenjiao Z, Gulimire WE, Yuandong H, Ying S. Establishment and application of detection methods of dicamba in drinking water. J Environ Occup Med. 2023;40(11):1314-8,26. https://doi.org/10.11836/JEOM23100.
Youning M, Mingxue C, Zhaoyun C, Renxiang M, Guonian Z. Determination of dicamba residue in vegetables using high performance liquid chromatography-tandem mass spectrometry. Chin J Pest Sci. 2012;14(3):349–52. https://doi.org/10.1002/bmc.1513.
Comments (0)