A molecularly imprinted ratio fluorescence sensor based on metal-enhanced fluorescence of core–shell structure CaF2-silver nanoparticle for visual detection of dicamba

Lee SG, Ha J-W, Sohn E-H, Park IJ, Lee S-B. Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films. Appl Surf Sci. 2016;390:339–45. https://doi.org/10.1016/j.apsusc.2016.08.090.

Article  CAS  Google Scholar 

Wang F, Fan X, Pi D, Wang M. Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles. Solid State Commun. 2005;133(12):775–9. https://doi.org/10.1016/j.ssc.2005.01.014.

Article  CAS  Google Scholar 

Dong N-N, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, et al. NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano. 2011;5(11):8665–71. https://doi.org/10.1021/nn202490m.

Article  CAS  PubMed  Google Scholar 

Coetsee E, Yagoub M, Swart H. Near infrared fluorescence properties of Tb4+ and Tb3+ inter-conversion states in CaF2: Yb3+ nanocrystals. Mater Res Bull. 2023;166:112350. https://doi.org/10.1016/j.materresbull.2023.112350.

Article  CAS  Google Scholar 

Camy P, Doualan J, Renard S, Braud A, Ménard V, Moncorgé R. Tm3+: CaF2 for 1.9 μm laser operation. Optics Commun. 2004;236(4–6):395–402. https://doi.org/10.1016/j.optcom.2004.03.055.

Article  CAS  Google Scholar 

Luo K, Chen H, Zhou Q, Yan Z, Su Z, Li K. A sensitive and visual molecularly imprinted fluorescent sensor incorporating CaF2 quantum dots and β-cyclodextrins for 5-hydroxymethylfurfural detection. Anal Chim Acta. 2020;1124:113–20. https://doi.org/10.1016/j.aca.2020.05.006.

Article  CAS  PubMed  Google Scholar 

Huang Y, Zhai J, Liu L, Shang Z, Zhang X, Huang H, et al. Recent developments on nanomaterial probes for detection of pesticide residues: a review. Anal Chim Acta. 2022;1215:339974. https://doi.org/10.1016/j.aca.2022.339974.

Article  CAS  PubMed  Google Scholar 

Bai L, Ye T, Si W, Yu J, Yuan M, Cao H, et al. Molecular imprinted polymer capped luminescent metal-organic framework for the determination of pyrethroids and its metabolite. Microchem J. 2023;193:109047. https://doi.org/10.1016/j.microc.2023.109047.

Article  CAS  Google Scholar 

Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano. 2009;3(3):744–52. https://doi.org/10.1021/nn900001q.

Article  CAS  PubMed  Google Scholar 

Yu L, Yang Y, Jiang X, Li Y, He X, Chen L, et al. A self-calibrating ratiometric fluorescence sensor with photonic crystal-based signal amplification for the detection of tetracycline in food. Food Chem. 2024;451:139418. https://doi.org/10.1016/j.foodchem.2024.139418.

Article  CAS  PubMed  Google Scholar 

He H, Muhammad P, Guo Z, Peng Q, Lu H, Liu Z. Controllably prepared molecularly imprinted core-shell plasmonic nanostructure for plasmon-enhanced fluorescence assay. Biosens Bioelectron. 2019;146:111733. https://doi.org/10.1016/j.bios.2019.111733.

Article  CAS  PubMed  Google Scholar 

Lin J-S, Radjenovic PM, Jin H, Li J-F. Plasmonic core–shell nanoparticle enhanced spectroscopies for surface analysis. ACS Publ. 2021;https://doi.org/10.1021/acs.analchem.1c00233.

Xu J, Zhang YJ, Yin H, Zhong HL, Su M, Tian ZQ, et al. Shell-isolated nanoparticle-enhanced Raman and fluorescence spectroscopies: synthesis and applications. Adv Optic Mater. 2018;6(4):1701069. https://doi.org/10.1002/adom.201701069.

Article  CAS  Google Scholar 

Yuan H, Khatua S, Zijlstra P, Yorulmaz M, Orrit M. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew Chem, Int Ed. 2013;52(4):1217–21. https://doi.org/10.1002/anie.201208125.

Article  CAS  Google Scholar 

Li J-F, Li C-Y, Aroca RF. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev. 2017;46(13):3962–79. https://doi.org/10.1039/C7CS00169J.

Article  CAS  PubMed  Google Scholar 

Li C, Zhu Y, Zhang X, Yang X, Li C. Metal-enhanced fluorescence of carbon dots adsorbed Ag@ SiO2 core-shell nanoparticles. RSC Adv. 2012;2(5):1765–8. https://doi.org/10.1039/C2RA01032A.

Article  CAS  Google Scholar 

Ding S-J, Liang S, Nan F, Liu X-L, Wang J-H, Zhou L, et al. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots. Nanoscale. 2015;7(5):1970–6. https://doi.org/10.1039/C4NR05731G.

Article  CAS  PubMed  Google Scholar 

Li CR, Lei YL, Li H, Ni M, Yang DR, Xie XY, et al. Suppressing non-radiative relaxation through single-atom metal modification for enhanced fluorescence efficiency in molybdenum disulfide quantum dots. Angew Chem Int Ed. 2022;61(34):e202207300. https://doi.org/10.1002/anie.202207300.

Article  CAS  Google Scholar 

Xu J, Morton W, Jones D, Tabish TA, Ryan MP, Xie F. Significant quantum yield enhancement for near infrared fluorescence dyes by silica templated silver nanorods. Appl Phys Rev. 2022;9(3). https://doi.org/10.1063/5.0082187.

Gahlaut SK, Pathak A, Gupta BD. Recent advances in silver nanostructured substrates for plasmonic sensors. Biosensors. 2022;12(9):713. https://doi.org/10.3390/bios12090713.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YJ, Radjenovic PM, Zhou XS, Zhang H, Yao JL, Li JF. Plasmonic core–shell nanomaterials and their applications in spectroscopies. Adv Mater. 2021;33(50):2005900. https://doi.org/10.1002/adma.202005900.

Article  CAS  Google Scholar 

Jalali HB, De Trizio L, Manna L, Di Stasio F. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chem Soc Rev. 2022;51(24):9861–81. https://doi.org/10.1039/D2CS00490A.

Article  Google Scholar 

Rahimi F, Anbia M, Farahi M. Aqueous synthesis of L-methionine capped PbS quantum dots for sensitive detection and quantification of arsenic (III). J Photochem Photobiol, A. 2021;417:113361. https://doi.org/10.1016/j.jphotochem.2021.113361.

Article  CAS  Google Scholar 

Christoffoleti PJ, Figueiredo MRAd, Peres LEP, Nissen S, Gaines T. Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances. Scientia Agricola. 2015;72(4):356–62. https://doi.org/10.1590/0103-9016-2014-0360.

Article  Google Scholar 

López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Design of a novel hapten and development of a sensitive monoclonal immunoassay for dicamba analysis in environmental water samples. Sci Total Environ. 2022;848:157770. https://doi.org/10.1016/j.scitotenv.2022.157770.

Article  CAS  PubMed  Google Scholar 

Riter LS, Pai N, Vieira BC, MacInnes A, Reiss R, Hapeman CJ, et al. Conversations about the future of dicamba: the science behind off-target movement. J Agric Food Chem. 2021;69(48):14435–44. https://doi.org/10.1021/acs.jafc.1c05589.

Article  CAS  PubMed  Google Scholar 

Zhu L, Li W, Zha J, Wang Z. Dicamba affects sex steroid hormone level and mRNA expression of related genes in adult rare minnow (Gobiocypris rarus) at environmentally relevant concentrations. Environ Toxicol. 2015;30(6):693–703. https://doi.org/10.1002/tox.21947.

Article  CAS  PubMed  Google Scholar 

Attademo AM, Lajmanovich RC, Peltzer PM, Boccioni APC, Martinuzzi C, Simonielo F, et al. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: an underestimated toxicity risk? Environ Sci Pollut Res. 2021;28:31962–74. https://doi.org/10.1007/s11356-021-13000-x.

Article  CAS  Google Scholar 

González NV, Soloneski S, Larramendy ML. The chlorophenoxy herbicide dicamba and its commercial formulation banvel® induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutat Res/Gen Toxicol Environ Mutagen. 2007;634(1–2):60–8. https://doi.org/10.1016/j.mrgentox.2007.06.001.

Article  CAS  Google Scholar 

Authority EFS. Scientific support for preparing an EU position for the 52nd Session of the Codex Committee on Pesticide Residues (CCPR). EFSA J. 2021;19(8). https://doi.org/10.2903/j.efsa.2021.6766.

Wenjiao Z, Gulimire WE, Yuandong H, Ying S. Establishment and application of detection methods of dicamba in drinking water. J Environ Occup Med. 2023;40(11):1314-8,26. https://doi.org/10.11836/JEOM23100.

Article  CAS  Google Scholar 

Youning M, Mingxue C, Zhaoyun C, Renxiang M, Guonian Z. Determination of dicamba residue in vegetables using high performance liquid chromatography-tandem mass spectrometry. Chin J Pest Sci. 2012;14(3):349–52. https://doi.org/10.1002/bmc.1513.

Article  CAS  Google Scholar 

Comments (0)

No login
gif