Melekhin AO, Tolmacheva VV, Goncharov NO, Apyari VV, Dmitrienko SG, Shubina EG, Grudev AI. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography–tandem mass spectrometry. Food Chem. 2022;387:11. https://doi.org/10.1016/j.foodchem.2022.132866.
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: a narrative review. Antibiotics-Basel. 2023;12(3):26. https://doi.org/10.3390/antibiotics12030487.
Chen J, Ying GG, Deng WJ. Antibiotic residues in food: extraction, analysis, and human health concerns. J Agric Food Chem. 2019;67(27):7569–86. https://doi.org/10.1021/acs.jafc.9b01334.
Article CAS PubMed Google Scholar
Moema D, Makwakwa TA, Gebreyohannes BE, Dube S, Nindi MM. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: Greenness assessment using National Environmental Methods Index Label (NEMI), Green Analytical Procedure Index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale. J Food Compos Anal. 2023;117:9. https://doi.org/10.1016/j.jfca.2023.105131.
Elgendy K, Zaky M, Eldin TA, Fadel S. Rapid HPLC determination of ciprofloxacin, ofloxacin, and marbofloxacin alone or in a mixture. Results Chem. 2023;5:8. https://doi.org/10.1016/j.rechem.2022.100749.
Wei LL, Chen YN, Shao DL, Li JJ. Simultaneous determination of nine quinolones in pure milk using PFSPE-HPLC-MS/MS with PS-PAN nanofibers as a sorbent. Foods. 2022;11(13):1843. https://doi.org/10.3390/foods11131843.
Article CAS PubMed PubMed Central Google Scholar
Zhu YJ, He PF, Hu HM, Qi MY, Li TJ, Zhang XN, Guo YM, Wu WY, Lan QP, Yang CC, Jin HB. Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chromatography tandem mass spectrometry. J Chromatogr B. 2022;1208:9. https://doi.org/10.1016/j.jchromb.2022.123390.
Moreno-González D, Hamed AM, Gilbert-López B, Gámiz-Gracia L, García-Campaña AM. Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J Chromatogr A. 2017;1510:100–7. https://doi.org/10.1016/j.chroma.2017.06.055.
Article CAS PubMed Google Scholar
Yu XL, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Highly luminescent lanthanide metal-organic frameworks with tunable color for nanomolar detection of iron(III), ofloxacin and gossypol and anti-counterfeiting applications. Angew Chem-Int Edit. 2023;62(35):9. https://doi.org/10.1002/anie.202306680.
Mi TJ, Wang ZH, Eremin SA, Shen JD, Zhang SX. Simultaneous determination of multiple (fluoro)quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. J Agric Food Chem. 2013;61(39):9347–55. https://doi.org/10.1021/jf403972r.
Article CAS PubMed Google Scholar
Sun WY, Liu WY, Qu LB. Development of ELISA and immunochromatographic assay for ofloxacin. Chin Chem Lett. 2007;18(9):1107–10. https://doi.org/10.1016/j.cclet.2007.07.008.
Zhang B, Lang YH, Guo BW, Cao ZY, Cheng J, Cai DF, Shentu XP, Yu XP. Indirect competitive enzyme-linked immunosorbent assay based on broad-spectrum antibody for simultaneous determination of thirteen fluoroquinolone antibiotics in Rana catesbeianus. Foods. 2023;12(13):12. https://doi.org/10.3390/foods12132530.
Chuang HH, Lee JB, Chuang YH, Lee KG. Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chem. 2009;113(1):297–301. https://doi.org/10.1016/j.foodchem.2008.07.021.
Prajesh R, Saini RK, Sharma AK, Agarwal A. Label-free detection of Thiram pesticide on flexible SERS-active substrate. Mater Chem Phys. 2023;295:10. https://doi.org/10.1016/j.matchemphys.2022.127088.
Thurner F, Alatraktchi FA. Recent trends in biosensors for quinolone detection: a comprehensive review. Chemosensors. 2023;11(9):24. https://doi.org/10.3390/chemosensors11090493.
Xiao XH, Yan KL, Xu XF, Li GK. Rapid analysis of ractopamine in pig tissues by dummy-template imprinted solid-phase extraction coupling with surface-enhanced Raman spectroscopy. Talanta. 2015;138:40–5. https://doi.org/10.1016/j.talanta.2015.02.003.
Article CAS PubMed Google Scholar
Guo ZM, Zheng YX, Yin LM, Xue SS, Ma LX, Zhou RY, Seedi HR, Zhang Y, Yosri N, Jayan H, Zou XB. Flexible Au@AgNRs/MAA/PDMS-based SERS sensor coupled with intelligent algorithms for in-situ detection of thiram on apple. Sens Actuator B-Chem. 2024;404:10. https://doi.org/10.1016/j.snb.2024.135303.
Feng JY, Hu YX, Grant E, Lu XN. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018;239:816–22. https://doi.org/10.1016/j.foodchem.2017.07.014.
Article CAS PubMed Google Scholar
Zhang M, Ren QY, Ma SQ, Zhang SZ, Sun JK, Ma JY, Li L, Zhang HL. Rapid detection of quinolone antibiotics in aquatic products by surface-enhanced Raman epectroscopy combined with thin layer chromatography. J Anal Chem. 2023;78(12):1752–9. https://doi.org/10.1134/s1061934823120110.
Wang KK, Li Y, Wang HG, Qian ZY, Zhu XK, Hussain S, Xie LM. CdSSe nano-flowers for ultrasensitive Raman detection of antibiotics. Molecules. 2023;28(7):10. https://doi.org/10.3390/molecules28072980.
Zhou YY, Wang HY, Zhao ZH, Luan DL, Bian XJ, Keqiang L, Yan J. Colloidal SERS measurement of enrofloxacin with petaloid nanostructure clusters formed by terminal deoxynucleotidyl transferase catalyzed cytosine-constituted ssDNA. Food Chem. 2023;429:136954. https://doi.org/10.1016/j.foodchem.2023.136954.
Article CAS PubMed Google Scholar
Wang PX, Wang L, Li C, Li X, Li GL. Reliable and rapid detection and quantification of enrofloxacin using a ratiometric SERS aptasensor. Molecules. 2022;27(24):15. https://doi.org/10.3390/molecules27248764.
Feng SL, Gao F, Chen ZW, Grant E, Kitts DD, Wang S, Lu XN. Determination of α-Tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. J Agric Food Chem. 2013;61(44):10467–75. https://doi.org/10.1021/jf4038858.
Article CAS PubMed Google Scholar
Yang YR, Shen XT. Preparation and application of molecularly imprinted polymers for flavonoids: review and perspective. Molecules. 2022;27(21):18. https://doi.org/10.3390/molecules27217355.
Nie DX, Zhu XT, Liu MH, Cheng M, Fan K, Zhao ZH, Huang QW, Zhang XL, Han Z. Molecularly imprinted polymer-based electrochemical sensor for rapid detection of masked deoxynivalenol with Mn-doped CeO2 nanozyme as signal amplifier. J Hazard Mater. 2024;477:9. https://doi.org/10.1016/j.jhazmat.2024.135366.
Cheng Y, Liu HD, Kuang LX, Yan Z, Li HF, Xu GF. Preparation and evaluation of molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and determination of quercetin in red wine. Microchem J. 2023;190:108716. https://doi.org/10.1016/j.microc.2023.108716.
Komiyama M, Mori T, Ariga K. Molecular imprinting: materials nanoarchitectonics with molecular information. Bull Chem Soc Jpn. 2018;91(7):1075–111. https://doi.org/10.1246/bcsj.20180084.
Hasaneen N, Akhtarian S, Pulicharla R, Brar SK, Rezai P. Surface molecularly imprinted polymer-based sensors for antibiotic detection. Trac-Trends Anal Chem. 2024;170:117389. https://doi.org/10.1016/j.trac.2023.117389.
Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F. Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples. Anal Chim Acta. 2006;562(2):145–51. https://doi.org/10.1016/j.aca.2006.01.080.
Prieto A, Schrader S, Bauer C, Moeder M. Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water. Anal Chim Acta. 2011;685(
Comments (0)