Assessing the predicted impact of single amino acid substitutions in calmodulin for CAGI6 challenges

Beghi S, Furmanik M, Jaminon A et al (2022) Calcium signalling in heart and vessels: role of calmodulin and downstream calmodulin-dependent protein kinases. Int J Mol Sci 23:16139. https://doi.org/10.3390/ijms232416139

Article  PubMed  PubMed Central  Google Scholar 

Birolo G, Benevenuta S, Fariselli P et al (2021) Protein stability perturbation contributes to the loss of function in haploinsufficient genes. Front Mol Biosci 8:620793. https://doi.org/10.3389/fmolb.2021.620793

Article  PubMed  PubMed Central  Google Scholar 

Bohush A, Leśniak W, Weis S, Filipek A (2021) Calmodulin and Its binding proteins in Parkinson’s disease. Int J Mol Sci 22:3016. https://doi.org/10.3390/ijms22063016

Article  PubMed  PubMed Central  Google Scholar 

Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328. https://doi.org/10.1016/s0962-8924(00)01800-6

Article  PubMed  Google Scholar 

Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

Article  PubMed  PubMed Central  Google Scholar 

Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

Article  PubMed  Google Scholar 

Compiani M, Capriotti E (2013) Computational and theoretical methods for protein folding. Biochemistry 52:8601–8624. https://doi.org/10.1021/bi4001529

Article  PubMed  Google Scholar 

Critical Assessment of Genome Interpretation Consortium (2024) CAGI, the critical assessment of genome interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Genome Biol 25:53. https://doi.org/10.1186/s13059-023-03113-6

Article  Google Scholar 

Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116. https://doi.org/10.1146/annurev.bb.24.060195.000505

Article  PubMed  Google Scholar 

Dal Cortivo G, Barracchia CG, Marino V et al (2022) Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias. Cell Mol Life Sci 79:127. https://doi.org/10.1007/s00018-022-04165-w

Article  Google Scholar 

Dal Cortivo G, Marino V, Zamboni D, Dell’Orco D (2023) Impact of calmodulin missense variants associated with congenital arrhythmia on the thermal stability and the degree of unfolding. Hum Genet. https://doi.org/10.1007/s00439-023-02629-y

Article  Google Scholar 

Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinform 12:151. https://doi.org/10.1186/1471-2105-12-151

Article  Google Scholar 

Elnaggar A, Heinzinger M, Dallago C et al (2022) ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell 44:7112–7127. https://doi.org/10.1109/TPAMI.2021.3095381

Article  PubMed  Google Scholar 

Folkman L, Stantic B, Sattar A, Zhou Y (2016) EASE-MM: sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J Mol Biol 428:1394–1405. https://doi.org/10.1016/j.jmb.2016.01.012

Article  PubMed  Google Scholar 

Frappier V, Chartier M, Najmanovich RJ (2015) ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucl Acids Res 43:W395-400. https://doi.org/10.1093/nar/gkv343

Article  PubMed  PubMed Central  Google Scholar 

Gerasimavicius L, Liu X, Marsh JA (2020) Identification of pathogenic missense mutations using protein stability predictors. Sci Rep 10:15387. https://doi.org/10.1038/s41598-020-72404-w

Article  PubMed  PubMed Central  Google Scholar 

Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387. https://doi.org/10.1016/s0022-2836(02)00442-4

Article  PubMed  Google Scholar 

Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742. https://doi.org/10.1016/S0092-8674(02)00682-7

Article  PubMed  Google Scholar 

Hussey JW, Limpitikul WB, Dick IE (2023) Calmodulin mutations in human disease. Channels (Austin) 17:2165278. https://doi.org/10.1080/19336950.2023.2165278

Article  PubMed  Google Scholar 

Jensen HH, Brohus M, Nyegaard M, Overgaard MT (2018) Human calmodulin mutations. Front Mol Neurosci 11:396. https://doi.org/10.3389/fnmol.2018.00396

Article  PubMed  PubMed Central  Google Scholar 

Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

Article  PubMed  PubMed Central  Google Scholar 

Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7

Article  PubMed  PubMed Central  Google Scholar 

Katsonis P, Lichtarge O (2014) A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness. Genome Res 24:2050–2058. https://doi.org/10.1101/gr.176214.114

Article  PubMed  PubMed Central  Google Scholar 

Kumar MD, Bava KA, Gromiha MM et al (2006) ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucl Acids Res 34:D204-6. https://doi.org/10.1093/nar/gkj103

Article  PubMed  Google Scholar 

Landrum MJ, Chitipiralla S, Brown GR et al (2020) ClinVar: improvements to accessing data. Nucl Acids Res 48:D835–D844. https://doi.org/10.1093/nar/gkz972

Article  PubMed  Google Scholar 

Li G, Panday SK, Alexov E (2021) SAAFEC-SEQ: a sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. Int J Mol Sci 22:606. https://doi.org/10.3390/ijms22020606

Article  PubMed  PubMed Central  Google Scholar 

Linse S, Helmersson A, Forsén S (1991) Calcium binding to calmodulin and its globular domains. J Biol Chem 266:8050–8054. https://doi.org/10.1016/S0021-9258(18)92938-8

Article  PubMed  Google Scholar 

Marabotti A, Scafuri B, Facchiano A (2021) Predicting the stability of mutant proteins by computational approaches: an overview. Brief Bioinform 22:bbaa074. https://doi.org/10.1093/bib/bbaa074

Article  PubMed  Google Scholar 

Mort M, Sterne-Weiler T, Li B et al (2014) MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biol 15:R19. https://doi.org/10.1186/gb-2014-15-1-r19

Article  PubMed  PubMed Central  Google Scholar 

Nussinov R, Wang G, Tsai C-J et al (2017) Calmodulin and PI3K signaling in KRAS cancers. Trends Cancer 3:214–224. https://doi.org/10.1016/j.trecan.2017.01.007

Article  PubMed  PubMed Central  Google Scholar 

Pancotti C, Benevenuta S, Birolo G et al (2022) Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset. Brief Bioinform 23:bbab555. https://doi.org/10.1093/bib/bbab555

Article  PubMed  PubMed Central  Google Scholar 

Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability. Nucl Acids Res 45:W229–W235. https://doi.org/10.1093/nar/gkx439

Article 

Comments (0)

No login
gif