Beghi S, Furmanik M, Jaminon A et al (2022) Calcium signalling in heart and vessels: role of calmodulin and downstream calmodulin-dependent protein kinases. Int J Mol Sci 23:16139. https://doi.org/10.3390/ijms232416139
Article PubMed PubMed Central Google Scholar
Birolo G, Benevenuta S, Fariselli P et al (2021) Protein stability perturbation contributes to the loss of function in haploinsufficient genes. Front Mol Biosci 8:620793. https://doi.org/10.3389/fmolb.2021.620793
Article PubMed PubMed Central Google Scholar
Bohush A, Leśniak W, Weis S, Filipek A (2021) Calmodulin and Its binding proteins in Parkinson’s disease. Int J Mol Sci 22:3016. https://doi.org/10.3390/ijms22063016
Article PubMed PubMed Central Google Scholar
Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328. https://doi.org/10.1016/s0962-8924(00)01800-6
Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195
Article PubMed PubMed Central Google Scholar
Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. https://doi.org/10.1016/j.cell.2007.11.028
Compiani M, Capriotti E (2013) Computational and theoretical methods for protein folding. Biochemistry 52:8601–8624. https://doi.org/10.1021/bi4001529
Critical Assessment of Genome Interpretation Consortium (2024) CAGI, the critical assessment of genome interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Genome Biol 25:53. https://doi.org/10.1186/s13059-023-03113-6
Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116. https://doi.org/10.1146/annurev.bb.24.060195.000505
Dal Cortivo G, Barracchia CG, Marino V et al (2022) Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias. Cell Mol Life Sci 79:127. https://doi.org/10.1007/s00018-022-04165-w
Dal Cortivo G, Marino V, Zamboni D, Dell’Orco D (2023) Impact of calmodulin missense variants associated with congenital arrhythmia on the thermal stability and the degree of unfolding. Hum Genet. https://doi.org/10.1007/s00439-023-02629-y
Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinform 12:151. https://doi.org/10.1186/1471-2105-12-151
Elnaggar A, Heinzinger M, Dallago C et al (2022) ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell 44:7112–7127. https://doi.org/10.1109/TPAMI.2021.3095381
Folkman L, Stantic B, Sattar A, Zhou Y (2016) EASE-MM: sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J Mol Biol 428:1394–1405. https://doi.org/10.1016/j.jmb.2016.01.012
Frappier V, Chartier M, Najmanovich RJ (2015) ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucl Acids Res 43:W395-400. https://doi.org/10.1093/nar/gkv343
Article PubMed PubMed Central Google Scholar
Gerasimavicius L, Liu X, Marsh JA (2020) Identification of pathogenic missense mutations using protein stability predictors. Sci Rep 10:15387. https://doi.org/10.1038/s41598-020-72404-w
Article PubMed PubMed Central Google Scholar
Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387. https://doi.org/10.1016/s0022-2836(02)00442-4
Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742. https://doi.org/10.1016/S0092-8674(02)00682-7
Hussey JW, Limpitikul WB, Dick IE (2023) Calmodulin mutations in human disease. Channels (Austin) 17:2165278. https://doi.org/10.1080/19336950.2023.2165278
Jensen HH, Brohus M, Nyegaard M, Overgaard MT (2018) Human calmodulin mutations. Front Mol Neurosci 11:396. https://doi.org/10.3389/fnmol.2018.00396
Article PubMed PubMed Central Google Scholar
Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
Article PubMed PubMed Central Google Scholar
Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7
Article PubMed PubMed Central Google Scholar
Katsonis P, Lichtarge O (2014) A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness. Genome Res 24:2050–2058. https://doi.org/10.1101/gr.176214.114
Article PubMed PubMed Central Google Scholar
Kumar MD, Bava KA, Gromiha MM et al (2006) ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucl Acids Res 34:D204-6. https://doi.org/10.1093/nar/gkj103
Landrum MJ, Chitipiralla S, Brown GR et al (2020) ClinVar: improvements to accessing data. Nucl Acids Res 48:D835–D844. https://doi.org/10.1093/nar/gkz972
Li G, Panday SK, Alexov E (2021) SAAFEC-SEQ: a sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. Int J Mol Sci 22:606. https://doi.org/10.3390/ijms22020606
Article PubMed PubMed Central Google Scholar
Linse S, Helmersson A, Forsén S (1991) Calcium binding to calmodulin and its globular domains. J Biol Chem 266:8050–8054. https://doi.org/10.1016/S0021-9258(18)92938-8
Marabotti A, Scafuri B, Facchiano A (2021) Predicting the stability of mutant proteins by computational approaches: an overview. Brief Bioinform 22:bbaa074. https://doi.org/10.1093/bib/bbaa074
Mort M, Sterne-Weiler T, Li B et al (2014) MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biol 15:R19. https://doi.org/10.1186/gb-2014-15-1-r19
Article PubMed PubMed Central Google Scholar
Nussinov R, Wang G, Tsai C-J et al (2017) Calmodulin and PI3K signaling in KRAS cancers. Trends Cancer 3:214–224. https://doi.org/10.1016/j.trecan.2017.01.007
Article PubMed PubMed Central Google Scholar
Pancotti C, Benevenuta S, Birolo G et al (2022) Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset. Brief Bioinform 23:bbab555. https://doi.org/10.1093/bib/bbab555
Article PubMed PubMed Central Google Scholar
Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability. Nucl Acids Res 45:W229–W235. https://doi.org/10.1093/nar/gkx439
Comments (0)