Organization WH. A blueprint for dementia research. Geneva: World Health Organization; 2022.
Nichols E, Steinmetz JD, Vollset SE, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Pub Health. 2022;7(2):105–25. https://doi.org/10.1016/S2468-2667(21)00249-8.
Jia X, Wang Z, Huang F, et al. A comparison of the mini-mental state examination (MMSE) with the Montreal cognitive assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatr. 2021;21:1–13. https://doi.org/10.1186/s12888-021-03495-6.
Pinto TCC, Machado L, Bulgacov TM, et al. Is the Montreal cognitive assessment (MoCA) screening superior to the mini-mental state examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in the elderly? Int Psychogeriatr. 2019;31(4):491–504. https://doi.org/10.1017/S1041610218001370.
Leng Y, Cui W, Peng Y, et al. Multimodal cross enhanced fusion network for diagnosis of Alzheimer’s disease and subjective memory complaints. Comput Biol Med. 2023;157:106788. https://doi.org/10.1016/j.compbiomed.2023.106788.
Kaplan E, Baygin M, Barua PD, et al. ExHiF: Alzheimer’s disease detection using exemplar histogram-based features with CT and MR images. Med Eng Phys. 2023;115:103971. https://doi.org/10.1016/j.medengphy.2023.103971.
Hajjar I, Okafor M, Choi JD, et al. Development of digital voice biomarkers and associations with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer’s disease. Alzheimer’s Dement: Diagn Assess Dis Monitor. 2023;15(1):12393. https://doi.org/10.1002/dad2.12393.
Mestach M, Hartsuiker RJ, Pistono A. Can we track the progression of Alzheimer’s disease via lexical-semantic variables in connected speech? J Neurolinguist. 2024;70:101189. https://doi.org/10.1016/j.jneuroling.2023.101189.
Chen X, Pu Y, Li J, et al. Cross-lingual Alzheimer’s disease detection based on paralinguistic and pre-trained features In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, 2023; pp. 1–2. https://doi.org/10.1109/ICASSP49357.2023.10095522.
Tripathi T, Kumar R. Speech-based detection of multi-class Alzheimer’s disease classification using machine learning. Int J Data Sci Anal. 2024;18(1):83–96.
Chen J, Ye J, Tang F, et al. Automatic detection of Alzheimer’s disease using spontaneous speech only. In: Interspeech 2021. 2021; pp: 3830–3834. https://doi.org/10.21437/Interspeech.2021-2002.
Kumar MR, Vekkot S, Lalitha S, et al. Dementia detection from speech using machine learning and deep learning architectures. Sensors. 2022;22(23):9311. https://doi.org/10.3390/s22239311.
Agbavor F, Liang H. Artificial intelligence-enabled end-to-end detection and assessment of Alzheimer’s disease using voice. Brain Sci. 2023. https://doi.org/10.3390/brainsci13010028.
Jin L, Oh Y, Kim H, et al. Consen: complementary and simultaneous ensemble for Alzheimer’s disease detection and MMSE score prediction. In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, 2023; pp. 1–2. https://doi.org/10.1109/ICASSP49357.2023.10096253.
Ilias L, Askounis D, Psarras J. Detecting dementia from speech and transcripts using transformers. Comput Speech Lang. 2023;79:101485. https://doi.org/10.1016/j.csl.2023.101485.
Meghanani A, Anoop CS, Ramakrishnan AG. An exploration of log-mel spectrogram and MFCC features for Alzheimer’s dementia recognition from spontaneous speech. In: 2021 IEEE spoken language technology workshop (SLT). 2021; pp. 670–677. https://doi.org/10.1109/SLT48900.2021.9383491.
Pacheco-Lorenzo MR, Christensen H, Anido-Rifón LE, et al. Analysis of voice biomarkers for the detection of cognitive impairment. IEEE Access. 2024;12:122840–51. https://doi.org/10.1109/ACCESS.2024.3442431.
Warule P, Mishra SP, Deb S. Time-frequency analysis of speech signal using Chirplet transform for automatic diagnosis of Parkinson’s disease. Biomed Eng Lett. 2023;13(4):613–23.
Kasture N, Jain P. Automatic recognition of disordered children’s speech signal in dyadic interaction using deep learning models. Multimed Tools Appl. 2024;83(16):49493–513. https://doi.org/10.1007/s11042-023-17461-9.
Salvati D, Drioli C, Foresti GL. A late fusion deep neural network for robust speaker identification using raw waveforms and gammatone cepstral coefficients. Expert Syst Appl. 2023;222:119750. https://doi.org/10.1016/j.eswa.2023.119750.
Meng W, Zhang Q, Ma S, et al. A lightweight CNN and transformer hybrid model for mental retardation screening among children from spontaneous speech. Comput Biol Med. 2022;151:106281. https://doi.org/10.1016/j.compbiomed.2022.106281.
Ivanova O, Martínez-Nicolás I, Meilán JJG. Speech changes in old age: methodological considerations for speech-based discrimination of healthy ageing and Alzheimer’s disease. Int J Lang Commun Disord. 2024;59(1):13–37. https://doi.org/10.1111/1460-6984.12888.
Li Y, Lai C, Lala D, et al. Alzheimer’s dementia detection through spontaneous dialogue with proactive robotic listeners. In: 2022 17th ACM/IEEE international conference on human–robot interaction (HRI), IEEE, 2022; pp. 875–879. https://doi.org/10.1109/HRI53351.2022.9889375.
Tamm B, Vandenberghe R, Van Hamme H. Cross-lingual transfer learning for Alzheimer’s detection from spontaneous speech. In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, 2023; pp. 1–2. https://doi.org/10.1109/ICASSP49357.2023.10096770.
Nishikawa K, Akihiro K, Hirakawa R, et al. Machine learning model for discrimination of mild dementia patients using acoustic features. Cognit Robot. 2022;2:21–9. https://doi.org/10.1016/j.cogr.2021.12.003.
Suman S, Sahoo K S, Das C, et al. Visualization of audio files using librosa. In: Proceedings of 2nd international conference on mathematical modeling and computational science: ICMMCS 2021. 2022; pp. 409–418.
Alex A, Wang L, Gastaldo P, et al. Data augmentation for speech separation. Speech Commun. 2023;152:102949. https://doi.org/10.1016/j.specom.2023.05.009.
Tan M, Le Q. Efficientnetv2: smaller models and faster training. In: International conference on machine learning, PMLR, 2021; pp. 10096–10106. https://doi.org/10.48550/arXiv.2104.00298.
Shams AM, Jabbari S. A deep learning approach for diagnosis of schizophrenia disorder via data augmentation based on convolutional neural network and long short-term memory. Biomed Eng Lett. 2024. https://doi.org/10.1007/s13534-024-00360-9.
Burke E, Gunstad J, Pavlenko O, et al. Distinguishable features of spontaneous speech in Alzheimer’s clinical syndrome and healthy controls. Aging Neuropsychol Cognit. 2024;31(3):575–86. https://doi.org/10.1080/13825585.2023.2221020.
Liu J, Fu F, Li L, et al. Efficient pause extraction and encode strategy for Alzheimer’s disease detection using only acoustic features from spontaneous speech. Brain Sci. 2023;13(3):477. https://doi.org/10.3390/brainsci13030477.
Comments (0)