Is there direct photoentrainment in the goldfish liver? Wavelength-dependent regulation of clock genes and investigation of the opsin 7 family

Albrecht U (2012) Timing to Perfection: the Biology of Central and Peripheral Circadian Clocks. Neuron 74:246–260. https://doi.org/10.1016/j.neuron.2012.04.006

Article  CAS  PubMed  Google Scholar 

Alonso-Gómez A, Madera D, Alonso-Gómez ÁL, Valenciano AI, Delgado MJ (2022) Daily rhythms in the IGF-1 system in the liver of Goldfish and their synchronization to Light/Dark cycle and feeding time. Animals 12:3371. https://doi.org/10.3390/ani12233371

Article  PubMed  PubMed Central  Google Scholar 

Amaral IPGG, Johnston IA (2012) Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol 302:193–206. https://doi.org/10.1152/ajpregu.00367.2011

Article  CAS  Google Scholar 

Ashton A, Foster RG, Jagannath A (2022) Photic Entrainment of the Circadian System. Int J Mol Sci 23:729. https://doi.org/10.3390/ijms23020729

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozek K, Relógio A, Kielbasa SM et al (2009) Regulation of clock-controlled genes in mammals. PLoS ONE 4(3):e4882. https://doi.org/10.1371/journal.pone.000488

Article  PubMed  PubMed Central  Google Scholar 

Buhr ED, Yue WWS, Ren X, Jiang Z, Liao HWR, Mei X, Vemaraju S, Nguyen MT, Reed RR, Lang RA, Yau KW, Van Gelder RN (2015) Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. J Comp Physiol Neuroethol Sens Neural Behav Physiol 112(42):13093–13098. https://doi.org/10.1073/PNAS.1516259112

Article  CAS  Google Scholar 

Buhr ED, Vemaraju S, Nicolá S, Diaz RA, Lang RN, Van Gelder EDB (2019) Neuropsin (OPN5) mediates local light-dependent induction of circadian clock genes and circadian photoentrainment in exposed murine skin. Curr Biol 29:3478–3487e4. https://doi.org/10.1016/j.cub.2019.08.063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cahill GM (2002) Clock mechanisms in zebrafish. Cell Tissue Res 309:27–34. https://doi.org/10.1007/s00441-002-0570-7

Article  CAS  PubMed  Google Scholar 

Carleton KL, Escobar-Camacho D, Stieb SM et al (2020) Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 223(8):jeb193334. https://doi.org/10.1242/jeb.193334

Article  PubMed  PubMed Central  Google Scholar 

Cavallari N, Frigato E, Vallone D et al (2011) A blind circadian clock in Cavefish reveals that Opsins Mediate Peripheral Clock Photoreception. PLoS Biol 9:e1001142. https://doi.org/10.1371/journal.pbio.1001142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Omori Y, Koren S et al (2019) De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci Adv 5:eaav0547. https://doi.org/10.1126/sciadv.aav0547

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortesia F, Musilová Z, Stieb SM, Hart NS, Siebeck UE, Malmstrøm M, Tørresen OK, Jentoft S, Cheney KL, Marshall NJ, Carleton KL, Salzburger W (2015) Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci U S A 112(5):1493–1498. https://doi.org/10.1073/PNAS.1417803112

Article  Google Scholar 

Cuesta IH, Lahiri K, Lopez-Olmeda JF, Loosli F, Foulkes NS, Vallone D (2014) Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes). Chronobiol Int 31(4):468–478. https://doi.org/10.3109/07420528.2013.856316

Article  PubMed  Google Scholar 

Davies WIL, Turton M, Peirson SN et al (2012) Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biol Lett 8:291–294. https://doi.org/10.1098/RSBL.2011.0864

Article  PubMed  Google Scholar 

Davies WIL, Tamai TK, Zheng L et al (2015) An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 25:1666–1679. https://doi.org/10.1101/gr.189886.115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcón J, Torriglia A, Attia D et al (2020) Exposure to Artificial Light at Night and the consequences for Flora, Fauna, and ecosystems. Front Neurosci 14:602796. https://doi.org/10.3389/fnins.2020.602796

Article  PubMed  PubMed Central  Google Scholar 

Foulkes NS, Whitmore D, Vallone D, Bertolucci C (2016) Studying the evolution of the Vertebrate Circadian Clock: the power of Fish as comparative models. Adv Genet 95:1–30. https://doi.org/10.1016/bs.adgen.2016.05.002

Article  CAS  PubMed  Google Scholar 

Frøland Steindal IA, Whitmore D (2019) Circadian clocks in fish-what have we learned so. far? Biology 8(1):17. https://doi.org/10.3390/biology8010017

Article  CAS  PubMed  Google Scholar 

Frøland Steindal IA, Whitmore D (2020) Zebrafish circadian clock entrainment and the importance of broad spectral light sensitivity. Front Physiol 11:1002. https://doi.org/10.3389/fphys.2020.01002

Article  Google Scholar 

Gómez-Boronat M, Sáiz N, Delgado MJ et al (2018) Time-lag in feeding schedule acts as a Stressor that alters circadian oscillators in Goldfish. Front Physiol 9:1749. https://doi.org/10.3389/fphys.2018.01749

Article  PubMed  PubMed Central  Google Scholar 

Gómez-Boronat M, De Pedro N, Alonso-Gómez ÁL et al (2022) Nuclear receptors (PPARs, REV-ERBs, RORs) and clock gene rhythms in Goldfish (Carassius auratus) are differently regulated in Hypothalamus and Liver. Front Physiol 13:1. https://doi.org/10.3389/fphys.2022.903799

Article  Google Scholar 

Hatori M, Panda S (2010) The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med 16:435–446. https://doi.org/10.1016/j.molmed.2010.07.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirano A, Fu YH, Ptáek LJ (2016) The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 23:1053–1060. https://doi.org/10.1038/nsmb.3326

Article  CAS  PubMed  Google Scholar 

Honma S (2018) The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci 68(3):207–219. https://doi.org/10.1007/S12576-018-0597-5

Article  PubMed  PubMed Central  Google Scholar 

Idda ML, Bertolucci C, Vallone D et al (2012) Circadian clocks: lessons from fish. Prog Brain Res 199:41–57. https://doi.org/10.1016/B978-0-444-59427-3.00003-4

Article  CAS  PubMed  Google Scholar 

Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ (2017) Interplay between the endocrine and circadian systems in fishes. J Endocrinol 232:R141–R159. https://doi.org/10.1530/JOE-16-0330

Article  CAS  PubMed  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/MOLBEV/MSY096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang Q, Afriyie G, Chen Z, Xu Z, Dong Z, Guo Y, Wang Z (2022) Analysis of opsin gene family of Crimson snapper (Lutjanus erythropterus). Gene 807:145960. https://doi.org/10.1016/J.GENE.2021.145960

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article 

Comments (0)

No login
gif