Albrecht U (2012) Timing to Perfection: the Biology of Central and Peripheral Circadian Clocks. Neuron 74:246–260. https://doi.org/10.1016/j.neuron.2012.04.006
Article CAS PubMed Google Scholar
Alonso-Gómez A, Madera D, Alonso-Gómez ÁL, Valenciano AI, Delgado MJ (2022) Daily rhythms in the IGF-1 system in the liver of Goldfish and their synchronization to Light/Dark cycle and feeding time. Animals 12:3371. https://doi.org/10.3390/ani12233371
Article PubMed PubMed Central Google Scholar
Amaral IPGG, Johnston IA (2012) Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol 302:193–206. https://doi.org/10.1152/ajpregu.00367.2011
Ashton A, Foster RG, Jagannath A (2022) Photic Entrainment of the Circadian System. Int J Mol Sci 23:729. https://doi.org/10.3390/ijms23020729
Article CAS PubMed PubMed Central Google Scholar
Bozek K, Relógio A, Kielbasa SM et al (2009) Regulation of clock-controlled genes in mammals. PLoS ONE 4(3):e4882. https://doi.org/10.1371/journal.pone.000488
Article PubMed PubMed Central Google Scholar
Buhr ED, Yue WWS, Ren X, Jiang Z, Liao HWR, Mei X, Vemaraju S, Nguyen MT, Reed RR, Lang RA, Yau KW, Van Gelder RN (2015) Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. J Comp Physiol Neuroethol Sens Neural Behav Physiol 112(42):13093–13098. https://doi.org/10.1073/PNAS.1516259112
Buhr ED, Vemaraju S, Nicolá S, Diaz RA, Lang RN, Van Gelder EDB (2019) Neuropsin (OPN5) mediates local light-dependent induction of circadian clock genes and circadian photoentrainment in exposed murine skin. Curr Biol 29:3478–3487e4. https://doi.org/10.1016/j.cub.2019.08.063
Article CAS PubMed PubMed Central Google Scholar
Cahill GM (2002) Clock mechanisms in zebrafish. Cell Tissue Res 309:27–34. https://doi.org/10.1007/s00441-002-0570-7
Article CAS PubMed Google Scholar
Carleton KL, Escobar-Camacho D, Stieb SM et al (2020) Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 223(8):jeb193334. https://doi.org/10.1242/jeb.193334
Article PubMed PubMed Central Google Scholar
Cavallari N, Frigato E, Vallone D et al (2011) A blind circadian clock in Cavefish reveals that Opsins Mediate Peripheral Clock Photoreception. PLoS Biol 9:e1001142. https://doi.org/10.1371/journal.pbio.1001142
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Omori Y, Koren S et al (2019) De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci Adv 5:eaav0547. https://doi.org/10.1126/sciadv.aav0547
Article CAS PubMed PubMed Central Google Scholar
Cortesia F, Musilová Z, Stieb SM, Hart NS, Siebeck UE, Malmstrøm M, Tørresen OK, Jentoft S, Cheney KL, Marshall NJ, Carleton KL, Salzburger W (2015) Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci U S A 112(5):1493–1498. https://doi.org/10.1073/PNAS.1417803112
Cuesta IH, Lahiri K, Lopez-Olmeda JF, Loosli F, Foulkes NS, Vallone D (2014) Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes). Chronobiol Int 31(4):468–478. https://doi.org/10.3109/07420528.2013.856316
Davies WIL, Turton M, Peirson SN et al (2012) Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biol Lett 8:291–294. https://doi.org/10.1098/RSBL.2011.0864
Davies WIL, Tamai TK, Zheng L et al (2015) An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 25:1666–1679. https://doi.org/10.1101/gr.189886.115
Article CAS PubMed PubMed Central Google Scholar
Falcón J, Torriglia A, Attia D et al (2020) Exposure to Artificial Light at Night and the consequences for Flora, Fauna, and ecosystems. Front Neurosci 14:602796. https://doi.org/10.3389/fnins.2020.602796
Article PubMed PubMed Central Google Scholar
Foulkes NS, Whitmore D, Vallone D, Bertolucci C (2016) Studying the evolution of the Vertebrate Circadian Clock: the power of Fish as comparative models. Adv Genet 95:1–30. https://doi.org/10.1016/bs.adgen.2016.05.002
Article CAS PubMed Google Scholar
Frøland Steindal IA, Whitmore D (2019) Circadian clocks in fish-what have we learned so. far? Biology 8(1):17. https://doi.org/10.3390/biology8010017
Article CAS PubMed Google Scholar
Frøland Steindal IA, Whitmore D (2020) Zebrafish circadian clock entrainment and the importance of broad spectral light sensitivity. Front Physiol 11:1002. https://doi.org/10.3389/fphys.2020.01002
Gómez-Boronat M, Sáiz N, Delgado MJ et al (2018) Time-lag in feeding schedule acts as a Stressor that alters circadian oscillators in Goldfish. Front Physiol 9:1749. https://doi.org/10.3389/fphys.2018.01749
Article PubMed PubMed Central Google Scholar
Gómez-Boronat M, De Pedro N, Alonso-Gómez ÁL et al (2022) Nuclear receptors (PPARs, REV-ERBs, RORs) and clock gene rhythms in Goldfish (Carassius auratus) are differently regulated in Hypothalamus and Liver. Front Physiol 13:1. https://doi.org/10.3389/fphys.2022.903799
Hatori M, Panda S (2010) The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med 16:435–446. https://doi.org/10.1016/j.molmed.2010.07.005
Article CAS PubMed PubMed Central Google Scholar
Hirano A, Fu YH, Ptáek LJ (2016) The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 23:1053–1060. https://doi.org/10.1038/nsmb.3326
Article CAS PubMed Google Scholar
Honma S (2018) The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci 68(3):207–219. https://doi.org/10.1007/S12576-018-0597-5
Article PubMed PubMed Central Google Scholar
Idda ML, Bertolucci C, Vallone D et al (2012) Circadian clocks: lessons from fish. Prog Brain Res 199:41–57. https://doi.org/10.1016/B978-0-444-59427-3.00003-4
Article CAS PubMed Google Scholar
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ (2017) Interplay between the endocrine and circadian systems in fishes. J Endocrinol 232:R141–R159. https://doi.org/10.1530/JOE-16-0330
Article CAS PubMed Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/MOLBEV/MSY096
Article CAS PubMed PubMed Central Google Scholar
Liang Q, Afriyie G, Chen Z, Xu Z, Dong Z, Guo Y, Wang Z (2022) Analysis of opsin gene family of Crimson snapper (Lutjanus erythropterus). Gene 807:145960. https://doi.org/10.1016/J.GENE.2021.145960
Article CAS PubMed Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Comments (0)