Synthesis of PLGA nanoparticles containing Auraptene and evaluation of their anti-cancer effects

1. Ahmadi R, Es-haghi A, Zare-Zardini H, Taghavizadeh Yazdi ME. Nickel oxide nanoparticles synthesized by Rose hip extract exert cytotoxicity against the HT-29 colon cancer cell line through the caspase-3/caspase-9/Bax pathway. Emergent Mater 2023; 6(6): 1877-1888. 
2.    Alabyadh T, Albadri R, Es-Haghi A, Yazdi MET, Ajalli N, Rahdar A, et al. ZnO/CeO2 Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J Funct Biomater. 2022; 13(3): 139. 
3.    Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open. 2022; 8(1): 12. 
4.    Bibak B, Shakeri F, Barreto GE, Keshavarzi Z, Sathyapalan T, Sahebkar A. A review of the pharmacological and therapeutic effects of auraptene. Biofactors. 2019; 45(6): 867-879. 
5.    Calzoni, E, Cesaretti A, Polchi A, Di Michele, A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019; 10(1): 4. 
6.    Chatterjee M, Chanda N. Formulation of PLGA nano-carriers: specialized modification for cancer therapeutic applications. Mater Adv. 2022; 3(2): 837-858. 
7.    Chaurio RA, Janko C, Muñoz LE, Frey B, Herrmann M, et al. Phospholipids: Key players in apoptosis and immune regulation. Molecules. 2009; 14(12): 4892-4914. 
8.    Che Marzuki NH, Wahab RA, Abdul Hamid M. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019; 33(1): 779-797. 
9.    Choi JS, Seo K, Yoo JW. Recent advances in PLGA particulate systems for drug delivery. J Pharm Investig. 2012; 42: 155-163. 
10.    Donini M, Gaglio SC, Laudanna C, Perduca M,  Dusi S. Oxyresveratrol-Loaded PLGA nanoparticles inhibit oxygen free radical production by human monocytes: Role in nanoparticle biocompatibility. Molecules. 2021; 26(14): 4351.
11.    Ebrahimi S, Mostafavi-Pour Z, Khazaei M, Nazari SE, Jamshidi ST,  Soukhtanloo M. Suppression of metastasis by citrus auraptene in a mouse model of colorectal cancer. Rev Bras Farmacogn. 2023; 33(1): 182-190. 
12.    Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516. 
13.    Es-haghi A, Taghavizadeh Yazdi ME, Sharifalhoseini M, Baghani M, Yousefi E, Rahdar A, Baino F. Application of response surface methodology for optimizing the therapeutic activity of ZnO Nanoparticles biosynthesized from aspergillus niger. Biomimetics. 2021; 6(2): 34. 
14.    Eslamieh-Ei FM, Sharifimoghaddammood N, Poustchi Tousi SA, Basharkhah S, Mottaghipisheh J, Es-Haghi A, et al. Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Nat Prod Res. 2023; 1-9. 
15.    Farhangfar SD, Fesahat F, Zare-Zardini H, Dehghan-Manshadi M, Zare F, Miresmaeili SM, et al. In vivo study of anticancer activity of ginsenoside Rh2-containing arginine-reduced graphene in a mouse model of breast cancer. Iran J Basic Med Sci. 2022; 25(12): 1442. 
16.    Farhangfar SD, Fesahat F, Zare-Zardini H, Dehghan-Manshadi M, Zare F, Miresmaeili SM, et al. Behavioral studies of mice with breast cancer after treatment with new anticancer agent, Rh2-containing arginine-graphene. Academia J. 2023; 38(1):63-65
17.    Fiorito S, Preziuso F, Sharifi-Rad M, Marchetti L, Epifano F, Genovese S. Auraptene and umbelliprenin: A review on their latest literature acquisitions. Phytochem Rev. 2022; 21:317-326. 
18.    Ghorbani M, Soukhtanloo M, Farrokhi AS, Hassanian SM, Ghorbani F, Afshari AR et al. Auraptene-induced cytotoxic effects in acute myeloid leukemia cell lines. Med Oncol, 2023; 40(8): 231. 
19.    Gomes dos Reis L, Lee WH, Svolos M, Moir LM, Jaber R, Windhab N, et al. Nanotoxicologic effects of PLGA nanoparticles formulated with a cell-penetrating peptide: Searching for a safe pDNA delivery system for the lungs. Pharmaceutics. 2019; 11(1): 12. 
20.    Grabowski N, Hillaireau H, Vergnaud-Gauduchon J, Nicolas V, Tsapis N, Kerdine-Römer S, et al. Surface-modified biodegradable nanoparticles’ impact on cytotoxicity and inflammation response on a co-culture of lung epithelial cells and human-like macrophages. J Biomed Nanotech. 2016; 12(1): 135-146. 
21.    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004; 305(5684): 626-629. 
22.    Gupta P, Singh A, Verma AK, Kant S, Pandey AK, et al. The anti-tumor and immunomodulatory effects of PLGA-based docetaxel nanoparticles in lung cancer: The potential involvement of necroptotic cell death through reactive oxygen species and calcium build-up. Vaccines (Basel). 2022; 10(11):1801. 
23.    Haghi Karamallah M, Alemi A, Ahmad Hosseini S, Tahery N, Radmanesh E, Malihi R, et al. Co‐encapsulation of curcumin and paclitaxel using non‐ionic surfactant based nanovesicles suppresses growth of ovarian carcinoma through the inhibition of nuclear factor κB and AKT1. Chemistry Select. 2024; 9(2): e202304221. 
24.    Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res. 2013; 12(2): 265-273. 
25.    Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2015; 5: 123-127. 
26.    Khalil Abad MH, Nadaf M, Taghavizadeh Yazdi ME. Biosynthesis of ZnO. Ag2O3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. Micro Nano Lett. 2023; 18(6): e12170. 
27.    Kızılbey K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. Acs Omega. 2019; 4(1): 555-562. 
28.    Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015; 43(5): 334-344.
29.    Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009; 9(4): 325-341.
30.    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011; 3(3): 1377-1397. 
31.    Mehta TA, Shah N, Parekh K, Dhas N, Patel JK. Surface-modified PLGA nanoparticles for targeted drug delivery to neurons. 2019; 33-71. 
32.    Mobaraki F, Momeni M, Jahromi M, Kasmaie FM, Barghbani M, Yazdi MET, et al.  Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochem. 2022; 119: 106-118
33.    Mobaraki F, Momeni M, Yazdi MET, Meshkat Z, Toosi MS, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem. 2021; 111: 167-177. 
34.    Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, Yazdi MET, et al. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J Control Release.  2023; 362: 278-296. 
35.    Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, et al. Plant gel-mediated synthesis of gold-coated nanoceria using ferula gummosa: characterization and estimation of its cellular toxicity toward breast cancer cell lines. J Funct Biomat. 2023; 14(7): 332. 
36.    Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Yazdi MET. Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceramics Int, 2021 47(15): 21490-21497. 
37.    Mousavi-Kouhi SM, Beyk-Khormizi A, Mohammadzadeh V, Ashna M, Es-haghi A, Mashreghi M, et al. Biological synthesis and characterization of gold nanoparticles using Verbascum speciosum Schrad. and cytotoxicity properties toward HepG2 cancer cell line. Res Chem Intermed. 2022; 48(1): 167-178. 
38.    Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv. 2019; 16(10): 1095-1112. 
39.    Rahimi E, Asefi F, Afzalinia A, Khezri S, Zare-Zardini H, Ghorani-Azam A, et al. Chitosan coated copper/silver oxide nanoparticles as carriers of breast anticancer drug: Cyclin D1/P53 expressions and cytotoxicity studies. Inorg Chem Commun. 2023; 111581. 
40.    Rahimi E, Asefi F, Afzalinia A, Khezri S, Zare-Zardini H, Ghorani-Azam A, et al. Chitosan coated copper/silver oxide nanoparticles as carriers of breast anticancer drug: Cyclin D1/P53 expressions and cytotoxicity studies. Inorg Chem Commun. 2023;, 158: 111581. 
41.    Ramos AP. Dynamic light scattering applied to nanoparticle characterization. In Nanocharacterization Techniques. 2017; Elsevier.99-110.
42.    Razavi MS, Abdollahi A, Malek-Khatabi A, Ejarestaghi, NM, Atashi A, Yousefi N, et al. Recent advances in PLGA-based nanofibers as anticancer drug delivery systems. J Drug Deliv Sci Technol. 2023; 104587. 
43.    Ruirui Z, He J, Xu X, Li S, Peng H, Deng Z, Huang Y. PLGA-based drug delivery system for combined therapy of cancer: Research progress. Mat Res Express. 2021; 8(12): 122002. 
44.    Saberian E, Jenča A, Petrášová A, Zare-Zardini H,  Ebrahimifar M. Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach. Pharmaceutics. 2024; 16(6): 802. 
45.    Saini RK, Ranjit A, Sharma K, Prasad P, Shang X, Gowda KGM, et al. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants. 2022; 11(2): 239. 
46.    Serrano-Lotina A, Portela R, Baeza P, Alcolea-Rodriguez V, Villarroel M, Ávila P. Zeta potential as a tool for functional materials development. Catalysis Today. 2023; 423: 113862. 
47.    Shakerimanesh K, Bayat F, Shahrokhi A, Baradaran A, Yousefi E, Mashreghi M, et al. Biomimetic synthesis and characterisation of homogenouse gold nanoparticles and estimation of its cytotoxity against breast cancer cell line. Mater Technol. 2022; 1-8. 
48.    Shariatinia Z, Oroujzadeh N. Anticancer drug delivery shuttles based on polyethylene glycol-polylactic acid nanocomposites: Molecular dynamics simulations. J Nanostruct. 2021; 11(2): 347-367. 
49.    Taghavizadeh Yazdi ME, Amiri MS, Darroudi M. Biopolymers in the synthesis of different nanostructuresavizadeh. In book: Reference Module in Materials Science and Materials EngineeringPublisher: Elsevier
50.    Taghavizadeh Yazdi ME, Darroudi M, Amiri MS, Zarrinfar H, Hosseini HA, Mashreghi M, et al. Antimycobacterial, anticancer, antioxidant and photocatalytic activity of biosynthesized silver nanoparticles using Berberis Integerrima. Iran J Sci Technol. 2022; 46(1): 1-11. 
51.    Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: A Review. Front Pharmacol. 2023; 14: 1059343. 
52.    Yetisgin AA, Cetinel S. Therapeutic nanoparticles and their targeted delivery applications. 2020; 25(9): doi:10.3390/molecules25092193
53.    Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers. 2023; 15(7): 1596. 
54.    Zarharan H, Bagherian M, Rokhi AS, Bajgiran RR, Yousefi E, Heravian P, et al. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. Arab J Chem. 2023; 16(7): 104806. 
55.    Zhang D, Liu L, Wang J, Zhang H, Zhang Z, Xing G, et al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front Pharmacol. 2022; 13: 990505. 
56.    Zhang D, Liu L, Wang J, Zhang H, Zhang Z., Xing G., et al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front Pharmacol. 2022; 13: 990505. 

Comments (0)

No login
gif