A Gas for Climate report, Guidehouse (2022) Biomethane production potentials in the EU-Feasibility of RePowerEU targets, production potentials in the Member States and outlook to 2050
AlKharafi FM, Saad AY, Ateya BG, Ghayad IM (2010) Electrochemical oxidation of sulfide ions on platinum electrodes. Mod Appl Sci. https://doi.org/10.5539/mas.v4n3p2
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011
Aryal N, Zhang Y, Bajracharya S, Pant D, Chen X (2022) Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132843
Ateya BG, Al-Kharafi FM (2002) Anodic oxidation of sulfide ions from chloride brines. Electrochem Commun 4:231–238. https://doi.org/10.1016/S1388-2481(02)00254-0
Ateya BG, Al-Kharafi FM, Abdallah RM, Al-Azab AS (2005) Electrochemical removal of hydrogen sulfide from polluted brines using porous flow through electrodes. J Appl Electrochem 35:297–303. https://doi.org/10.1007/s10800-004-7273-6
Bansal R, Verduzco R, Wong MS, Westerhoff P, Garcia-Segura S (2022) Development of nano boron-doped diamond electrodes for environmental applications. J Electroanalyt Chem. https://doi.org/10.1016/j.jelechem.2022.116028
Baudler A, Schmidt I, Langner M, Greiner A, Schröder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055. https://doi.org/10.1039/c5ee00866b
Blázquez E, Guisasola A, Gabriel D, Baeza JA (2019) Application of Bioelectrochemical systems for the treatment of wastewaters with sulfur species. In: Microbial Electrochemical Technology-Sustainable Platform for Fuels, Chemicals and Remediation, pp. 641–663. https://doi.org/10.1016/B978-0-444-64052-9.00026-1
Broderius SJ, Smith LJ Jr (1977) Direct determination and calculation of aqueous hydrogen sulfide. Anal Chem 49:424–428. https://doi.org/10.1021/ac50011a024
Cai T, Meng L, Chen G, Xi Y, Jiang N, Song J, Zheng S, Liu Y, Zhen G, Huang M (2020) Application of advanced anodes in microbial fuel cells for power generation: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.125985
Caliari PC, Pacheco MJ, Ciríaco LF, Lopes AMC (2017) Anodic oxidation of sulfide to sulfate: effect of current density on the process kinetics. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20160197
Caliari PC, Pacheco MJ, Ciríaco L, Lopes A (2019) Tannery wastewater: organic load and sulfide removal dynamics by electrochemical oxidation at different anode materials. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100345
Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, Liu H (2019) Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1087-z
Cattaneo CR, Muños R, Korshin GV, Naddeo V, Belgiorno V, Zarra T (2023) Biological desulfurization of biogas: a comprehensive review on sulfide microbial metabolism and treatment biotechnologies. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2023.164689
Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
Chen Z, Zhang S, Zhong L (2019) Simultaneous sulfide removal, nitrogen removal and electricity generation in a coupled microbial fuel cell system. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121888
Choi E, Rim JM (1991) Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci Technol 23:1259–1264. https://doi.org/10.2166/wst.1991.0577
Cioabla AE, Ionel I, Dumitrel G-A, Popescu F (2012) Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-5-39
Daghio M, Vaiopoulou E, Aulenta F, Sherry A, Head I, Franzetti A, Rabaey K (2018) Anode potential selection for sulfide removal in contaminated marine sediments. J Hazard Mater 360:498–503. https://doi.org/10.1016/j.jhazmat.2018.08.016
De Gusseme B, De Schryver P, De Cooman M, Verbeken K, Boeckx P, Verstraete W, Boon N (2008) Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal. FEMS Microbiol Ecol 67:151–161. https://doi.org/10.1111/j.1574-6941.2008.00598.x
De Rink R, Lavender MB, Liu D, Klok JBM, Sorokin DY, ter Heijne A, Buisman CJN (2022) Continuous electron shuttling by sulfide oxidizing bacteria as a novel strategy to produce electric current. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127358
Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. An introduction, 1st edn. Wiley
Ding L, Lin H, Hetchler B, Wang Y, Wei W, Hu B (2021a) Electrochemical mitigation of hydrogen sulfide in deep-pit swine manure storage. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146048
Ding L, Lin H, Zamalloa C, Hu B (2021b) Simultaneous phosphorus recovery, sulfide removal, and biogas production improvement in electrochemically assisted anaerobic digestion of dairy manure. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146226
Dinh HTT, Kambara H, Matsushita S, Yoshiteru A, Kindaichi T, Ozaki N, Ohashi A (2022) Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates. J Environ Sci 116:68–78. https://doi.org/10.1016/j.jes.2021.07.027
Dong Z-S, Zhao Y, Fan L, Wang Y-X, Wang J-W, Zhang K (2017) Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell. Int J Electrochem Sci 12:10553–10566. https://doi.org/10.20964/2017.11.53
Dutta PK, Rozendal RA, Yuan Z, Rabaey K, Keller J (2009a) Electrochemical regeneration of sulfur loaded electrodes. Electrochem Commun 11:1437–1440. https://doi.org/10.1016/j.elecom.2009.05.024
Dutta PK, Keller J, Yuan Z, Rozendal RA, Rabaey K (2009b) Role of sulfur during acetate oxidation in biological anodes. Environ Sci Technol 43:3839–3845. https://doi.org/10.1021/es803682k
Dutta PK, Rabaey K, Yuan Z, Rozendal RA, Keller J (2010) Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Res 44:2563–2571. https://doi.org/10.1016/j.watres.2010.01.008
Dykstra CM, Pavlostathis SG (2021) Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading. Water Res. https://doi.org/10.1016/j.watres.2021.117268
Eaktasang N, Min H-S, Kang C, Kim HS (2013) Control of malodorous hydrogen sulfide compounds using microbial fuel cell. Bioprocess Biosyst Eng 36:1417–1425. https://doi.org/10.1007/s00449-012-0881-3
EBA, Guidehouse (2024) Biogases towards 2040 and beyond: a realistic and resilient path to climate neutrality. www.europeanbiogas.eu/wp-content/uploads/2024/04/Biogases-towards-2040-and-beyond_FINAL.pdf
Gong Y, Ebrahim A, Feist AM, Embree M, Zhang T, Lovely D, Zengler K (2013) Sulfide-driven microbial electrosynthesis. Environ Sci Technol 47:568–573. https://doi.org/10.1021/es303837j
Guo Y, Wei X, Zhang S (2020) Simultaneous removal of organics, sulfide and ammonium coupled with electricity generation in a loop microbial fuel cell system. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123082
Gutierrez O, Park D, Sharma KR, Yuan Z (2009) Effect of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res 43:2549–2557. https://doi.org/10.1016/j.watres.2009.03.008
Habermann W, Pommer E-H (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133. https://doi.org/10.1007/BF00180650
Hindatu Y, Annuar MSM, Gumel AM (2017) Mini-review: Anode modification for improved performance of microbial fuel cell. Renew Sustain Energy Rev 73:236–248. https://doi.org/10.1016/j.rser.2017.01.138
Comments (0)