Mass Spectrometry Characterization of the Human Ankle and Hindfoot Fracture Microenvironment in Young and Aged Subjects

Granero-Molto, F., Weis, J. A., Miga, M. I., Landis, B., Myers, T. J., O’Rear, L., Longobardi, L., Jansen, E. D., Mortlock, D. P., & Spagnoli, A. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells., 27(8), 1887–1898.

Article  PubMed  CAS  Google Scholar 

Kitaori, T., Ito, H., Schwarz, E. M., Tsutsumi, R., Oishi, S., Nakano, M., Fujii, N., Nagasawa, T., & Nakamura, T. (2009). Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis & Rheumatism., 60(3), 813–823.

Article  CAS  Google Scholar 

Bradaschia-Correa, V., Leclerc, K., Josephson, A. M., Lee, S., Palma, L., Litwa, H. P., Neibart, S. S., Huo, J. C., & Leucht, P. (2019). Hox gene expression determines cell fate of adult periosteal stem/progenitor cells. Scientific Reports., 9(1), 5043.

Article  PubMed  PubMed Central  Google Scholar 

Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551–555.

Article  PubMed  PubMed Central  Google Scholar 

Eltoukhy, H. S., Sinha, G., Moore, C. A., Gergues, M., & Rameshwar, P. (2018). Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 155, 92–103.

Article  PubMed  CAS  Google Scholar 

Oh, J., Lee, Y. D., & Wagers, A. J. (2014). Stem cell aging: Mechanisms, regulators, and therapeutic opportunities. Nature Medicine, 20, 870–880.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang, X., Schwarz, E. M., Young, D. A., Puzas, J. E., Rosier, R. N., & O’Keefe, R. J. (2002). Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. The Journal of Clinical Investigation, 109, 1405–1415.

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Gonzalo-Calvo, D., Neitzert, K., Fernandez, M., Vega-Naredo, I., Caballero, B., Garcia-Macia, M., Suarez, F. M., Rodriguez-Colunga, M. J., Solano, J. J., & Coto-Montes, A. (2010). Differential inflammatory responses in aging and disease: TNF-alpha and IL-6 as possible biomarkers. Free Radical Biology & Medicine, 49, 733–737.

Article  Google Scholar 

Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. The Journal of Clinical Investigation, 115(5), 1111–1119.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Clase, L., Recknagel, S., & Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology., 8, 133–143.

Article  Google Scholar 

Gibon, E., Lu, L., & Goodman, S. B. (2016). Aging, inflammation, stem cells, and bone healing. Stem Cell Research & Therapy., 7(44), 1–7.

Google Scholar 

Campisi, J., & Robert, L. (2014). Cell senescence: Role in aging and age-related disease. In L. Robert & T. Fulop (Eds.), Aging: Facts and Theories (pp. 45–61). Cham: S. Karger AG.

Chapter  Google Scholar 

Lasry, A., & Ben-Neriah, Y. (2015). Senescence-associated inflammatroy responses: Aging and cancer perspectives. Trends in Immunology., 36(4), 217–228.

Article  PubMed  CAS  Google Scholar 

HaileMariam, M., Eguez, R. V., Singh, H., Bekele, S., Ameni, G., Pieper, R., & Yu, Y. (2018). S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. Journal of Proteome Research, 17(9), 2917–2924.

Article  PubMed  CAS  Google Scholar 

Bache, N., Geyer, P. E., Bekker-Jensen, D. B., Hoerning, O., Falkenby, L., Treit, P. V., Doll, S., Paron, I., Muller, J. B., Meier, F., Olsen, J. V., Vorm, O., & Mann, M. (2018). A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Molecular and Cellular Proteomics, 17(11), 2284–2296.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ludwig, C., Gillet, L., Rosenberger, G., Amon, S., Collins, B. C., & Aebersold, R. (2018). Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Molecular Systems Biology, 14(8), e8126.

Article  PubMed  PubMed Central  Google Scholar 

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740.

Article  PubMed  CAS  Google Scholar 

Jones, D. R., Wu, Z., Chauhan, D., Anderson, K. C., & Peng, J. (2014). A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma. Analytical Chemistry, 86(7), 3667–3675.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Antolic, A., Roy, B. D., Tarnopolsky, M. A., Zernicke, R. F., Wohl, G. R., Shaughnessy, S. G., & Bourgeois, J. M. (2007). Creatine monohydrate increases bone mineral density in young sprague-dawley rats. Medicine and Science in Sports and Exercise, 39(5), 816–820.

Article  PubMed  CAS  Google Scholar 

Forbes, S. C., Chilibeck, P. D., & Candow, D. G. (2018). Creatine supplementation during resistance training does not lead to greater bone mineral density in older humans: A brief meta-analysis. Frontiers in Nutrition, 5(27), 1–21.

Google Scholar 

Forbes, S. C., Ostojic, S. M., Sourza-Junior, T. P., & Candow, D. G. (2022). A high dose of creatine combined with resistance training appears to be required to augment indices of bone health in older adults. Annals Nutr Metab., 78, 183–186.

Article  CAS  Google Scholar 

Savic, D., Hodson, L., Neubauer, S., & Pavlides, M. (2020). The importance of the fatty acid transporter l-Carnitine in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 12(8), 1–15.

Article  Google Scholar 

Aydin, A., Halici, Z., Albayrak, A., Polat, B., Karakus, E., Yildirim, O. S., Bayir, Y., Cadirci, E., Ayan, A. K., & Aksakal, A. M. (2015). Treatment with carnitine enhances bone fracture healing under osteoporotic and/or inflammatory conditions. Basic & Clinical Pharmacology & Toxicology., 117, 173–179.

Article  CAS  Google Scholar 

Lu, Y., Yu, S. S., Zong, M., Fan, S. S., Lu, T. B., Gong, R. H., Sun, L. S., & Fan, L. Y. (2017). Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis. Science and Reports, 7, 1–10.

Google Scholar 

Schubert, D., Maier, B., Morawietz, L., Krenn, V., & Kamradt, T. (2004). Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. The Journal of Immunology, 172(7), 4503–4509.

Article  PubMed  CAS  Google Scholar 

Zhang, Y., Kent, J. W., 2nd., Lee, A., Cerjak, D., Ali, O., Diasio, R., Olivier, M., Blangero, J., Carless, M. A., & Kissebah, A. H. (2013). Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population. BMC Medical Genomics, 6, 1–14.

Article  Google Scholar 

Stoynev, N., Dimova, I., Rukova, B., Hadjidekova, S., Nikolova, D., Toncheva, D., & Tankova, T. (2014). Gene expression in peripheral blood of patients with hypertension and patients with type 2 diabetes. Journal of Cardiovascular Medicine (Hagerstown, Md.), 15(9), 702–709.

Article  PubMed  CAS  Google Scholar 

Lazáry, A., Kósa, J. P., Tóbiás, B., Lazáry, J., Balla, B., Bácsi, K., Takács, I., Nagy, Z., Mezo, T., Speer, G., & Lakatos, P. (2008). Single nucleotide polymorphisms in new candidate genes are associated with bone mineral density and fracture risk. European Journal of Endocrinology, 159(2), 187–196.

Article  PubMed  Google Scholar 

Löffler J. Impact of the local metabolic milieu on bone fracture healing. [Dissertation]. Berlin, Germany: Department of Biology, Chemistry, and Pharmacy of Freie Universität Berlin; 2019.

Comments (0)

No login
gif