Granero-Molto, F., Weis, J. A., Miga, M. I., Landis, B., Myers, T. J., O’Rear, L., Longobardi, L., Jansen, E. D., Mortlock, D. P., & Spagnoli, A. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells., 27(8), 1887–1898.
Article PubMed CAS Google Scholar
Kitaori, T., Ito, H., Schwarz, E. M., Tsutsumi, R., Oishi, S., Nakano, M., Fujii, N., Nagasawa, T., & Nakamura, T. (2009). Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis & Rheumatism., 60(3), 813–823.
Bradaschia-Correa, V., Leclerc, K., Josephson, A. M., Lee, S., Palma, L., Litwa, H. P., Neibart, S. S., Huo, J. C., & Leucht, P. (2019). Hox gene expression determines cell fate of adult periosteal stem/progenitor cells. Scientific Reports., 9(1), 5043.
Article PubMed PubMed Central Google Scholar
Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551–555.
Article PubMed PubMed Central Google Scholar
Eltoukhy, H. S., Sinha, G., Moore, C. A., Gergues, M., & Rameshwar, P. (2018). Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 155, 92–103.
Article PubMed CAS Google Scholar
Oh, J., Lee, Y. D., & Wagers, A. J. (2014). Stem cell aging: Mechanisms, regulators, and therapeutic opportunities. Nature Medicine, 20, 870–880.
Article PubMed PubMed Central CAS Google Scholar
Zhang, X., Schwarz, E. M., Young, D. A., Puzas, J. E., Rosier, R. N., & O’Keefe, R. J. (2002). Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. The Journal of Clinical Investigation, 109, 1405–1415.
Article PubMed PubMed Central CAS Google Scholar
De Gonzalo-Calvo, D., Neitzert, K., Fernandez, M., Vega-Naredo, I., Caballero, B., Garcia-Macia, M., Suarez, F. M., Rodriguez-Colunga, M. J., Solano, J. J., & Coto-Montes, A. (2010). Differential inflammatory responses in aging and disease: TNF-alpha and IL-6 as possible biomarkers. Free Radical Biology & Medicine, 49, 733–737.
Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. The Journal of Clinical Investigation, 115(5), 1111–1119.
Article PubMed PubMed Central CAS Google Scholar
Clase, L., Recknagel, S., & Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology., 8, 133–143.
Gibon, E., Lu, L., & Goodman, S. B. (2016). Aging, inflammation, stem cells, and bone healing. Stem Cell Research & Therapy., 7(44), 1–7.
Campisi, J., & Robert, L. (2014). Cell senescence: Role in aging and age-related disease. In L. Robert & T. Fulop (Eds.), Aging: Facts and Theories (pp. 45–61). Cham: S. Karger AG.
Lasry, A., & Ben-Neriah, Y. (2015). Senescence-associated inflammatroy responses: Aging and cancer perspectives. Trends in Immunology., 36(4), 217–228.
Article PubMed CAS Google Scholar
HaileMariam, M., Eguez, R. V., Singh, H., Bekele, S., Ameni, G., Pieper, R., & Yu, Y. (2018). S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. Journal of Proteome Research, 17(9), 2917–2924.
Article PubMed CAS Google Scholar
Bache, N., Geyer, P. E., Bekker-Jensen, D. B., Hoerning, O., Falkenby, L., Treit, P. V., Doll, S., Paron, I., Muller, J. B., Meier, F., Olsen, J. V., Vorm, O., & Mann, M. (2018). A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Molecular and Cellular Proteomics, 17(11), 2284–2296.
Article PubMed PubMed Central CAS Google Scholar
Ludwig, C., Gillet, L., Rosenberger, G., Amon, S., Collins, B. C., & Aebersold, R. (2018). Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Molecular Systems Biology, 14(8), e8126.
Article PubMed PubMed Central Google Scholar
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740.
Article PubMed CAS Google Scholar
Jones, D. R., Wu, Z., Chauhan, D., Anderson, K. C., & Peng, J. (2014). A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma. Analytical Chemistry, 86(7), 3667–3675.
Article PubMed PubMed Central CAS Google Scholar
Antolic, A., Roy, B. D., Tarnopolsky, M. A., Zernicke, R. F., Wohl, G. R., Shaughnessy, S. G., & Bourgeois, J. M. (2007). Creatine monohydrate increases bone mineral density in young sprague-dawley rats. Medicine and Science in Sports and Exercise, 39(5), 816–820.
Article PubMed CAS Google Scholar
Forbes, S. C., Chilibeck, P. D., & Candow, D. G. (2018). Creatine supplementation during resistance training does not lead to greater bone mineral density in older humans: A brief meta-analysis. Frontiers in Nutrition, 5(27), 1–21.
Forbes, S. C., Ostojic, S. M., Sourza-Junior, T. P., & Candow, D. G. (2022). A high dose of creatine combined with resistance training appears to be required to augment indices of bone health in older adults. Annals Nutr Metab., 78, 183–186.
Savic, D., Hodson, L., Neubauer, S., & Pavlides, M. (2020). The importance of the fatty acid transporter l-Carnitine in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 12(8), 1–15.
Aydin, A., Halici, Z., Albayrak, A., Polat, B., Karakus, E., Yildirim, O. S., Bayir, Y., Cadirci, E., Ayan, A. K., & Aksakal, A. M. (2015). Treatment with carnitine enhances bone fracture healing under osteoporotic and/or inflammatory conditions. Basic & Clinical Pharmacology & Toxicology., 117, 173–179.
Lu, Y., Yu, S. S., Zong, M., Fan, S. S., Lu, T. B., Gong, R. H., Sun, L. S., & Fan, L. Y. (2017). Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis. Science and Reports, 7, 1–10.
Schubert, D., Maier, B., Morawietz, L., Krenn, V., & Kamradt, T. (2004). Immunization with glucose-6-phosphate isomerase induces T cell-dependent peripheral polyarthritis in genetically unaltered mice. The Journal of Immunology, 172(7), 4503–4509.
Article PubMed CAS Google Scholar
Zhang, Y., Kent, J. W., 2nd., Lee, A., Cerjak, D., Ali, O., Diasio, R., Olivier, M., Blangero, J., Carless, M. A., & Kissebah, A. H. (2013). Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population. BMC Medical Genomics, 6, 1–14.
Stoynev, N., Dimova, I., Rukova, B., Hadjidekova, S., Nikolova, D., Toncheva, D., & Tankova, T. (2014). Gene expression in peripheral blood of patients with hypertension and patients with type 2 diabetes. Journal of Cardiovascular Medicine (Hagerstown, Md.), 15(9), 702–709.
Article PubMed CAS Google Scholar
Lazáry, A., Kósa, J. P., Tóbiás, B., Lazáry, J., Balla, B., Bácsi, K., Takács, I., Nagy, Z., Mezo, T., Speer, G., & Lakatos, P. (2008). Single nucleotide polymorphisms in new candidate genes are associated with bone mineral density and fracture risk. European Journal of Endocrinology, 159(2), 187–196.
Löffler J. Impact of the local metabolic milieu on bone fracture healing. [Dissertation]. Berlin, Germany: Department of Biology, Chemistry, and Pharmacy of Freie Universität Berlin; 2019.
Comments (0)