Comparative Study of the Rat-Labeled PKH26-MSCs and Its Derived Exosomes as a Neurotherapeutic Approach on LPS-Induced Alzheimer’s Disease

Cui GH, Guo HD, Li H, Zhai Y, Gong ZB, Wu J, Liu JS, Dong YR, Hou SX, Liu JR. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing. 2019;16(1):1–12.

Article  CAS  Google Scholar 

Tanaka M, Török N, Vécsei L. Novel pharmaceutical approaches in dementia. NeuroPsychopharmacotherapy. Cham: Springer; 2020. p. 1–18.

Google Scholar 

Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics. Inflammation. 2023;46(1):1–17.

Article  CAS  PubMed  Google Scholar 

Chu J, Praticò D. The 5-lipoxygenase as modulator of Alzheimer’s γ-secretase and therapeutic target. Brain Res Bull. 2016;126(Pt 2):207–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phan J, Kumara P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018;7(1):1522236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG, Sensebe L. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–24.

Article  CAS  PubMed  Google Scholar 

Fan XL, Zhang Z, Ma CY, Fu QL. Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep. 2019;39(1):BSR 20182160.

Article  CAS  Google Scholar 

Xie ZH, Liu Z, Zhang XR, Yang H, Wei LF, Wang Y, Xu SL, Sun L, Lai C, Bi JZ, Wang XY. Wharton’s Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-beta deposition in an APP/PS1 transgenic mouse model. Clin Exp Med. 2016;16(1):89–98.

Article  CAS  PubMed  Google Scholar 

Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: review. Cell Mol Neurobiol. 2023;43(6):2643–73.

Article  PubMed  PubMed Central  Google Scholar 

Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017;8(1):111.

Article  PubMed  PubMed Central  Google Scholar 

L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cellsecretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 201;46:1–9.

Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of stem cell-derived extracellular vesicles in nerve regeneration. Int J Mol Sci. 2024;25(11):5863.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong M, Yu B, Wang JC, Wang Y, Liu M, Paul C, Millard RW, Xiao D, Ashraf M, Xu M. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 2017;8(28):45200–12.

Article  PubMed  PubMed Central  Google Scholar 

Mathew SA, Chandravanshi B, Bhonde R. Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci. 2017;182:85–92.

Article  CAS  PubMed  Google Scholar 

Fayazi N, Sheykhhasan M, Asl SS, Najafi R. Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment. Mol Neurobiol. 2021;58(7):3494–514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao L, Hareendran S, Loh YP. Function of exosomes in neurological disorders and brain tumors. Extracell Vesicles Circ Nucl Acids. 2021;2:55–79.

CAS  PubMed  PubMed Central  Google Scholar 

Zhu B, Wang ZG, Ding J, Liu N, Wang DM, Ding LC, Yang C. Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus. Exp Ther Med. 2014;7(3):750–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasiri E, Alizadeh A, Roushandeh AM, Gazor R, Hashemi-Firouzi N, Golipoor Z. Melatonin-pretreated adipose-derived mesenchymal stem cells efficiently improved learning, memory, and cognition in an animal model of Alzheimer’s disease. Metab Brain Dis. 2019;34(4):1131–43.

Article  CAS  PubMed  Google Scholar 

Zhao C, Zhou X, Qiu J, Xin D, Li T, Chu X, Yuan H, Wang H, Wang Z, Wang D. Exosomes derived from bone marrow mesenchymal stem cells inhibit complement activation in rats with spinal cord injury. Drug Des Dev Ther. 2019;13:3693–704.

Article  CAS  Google Scholar 

Abdel Aziz MA, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Ahmed HH, Rashed LA, Sabry D, Hassouna AA, Hasan NM. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem. 2007;40:893–9.

Article  CAS  PubMed  Google Scholar 

Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;28:35.

Google Scholar 

Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, Sun C, Li B, Wang Z, Lan W, Zhang C, Shi C, Zhou Y. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 2019;10(1):30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58.

Article  PubMed  PubMed Central  Google Scholar 

Bulbul L, Kamruzzaman SM, Mostafizur Rahman M. Relationship of brain antioxidant protection of aged mice with memory enhancing efficiency of Aegiceras corniculatum leaves. Orient Pharm Exp Med. 2017;17:397–407.

Article  Google Scholar 

Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Soleimani S. Effect of amyloid β-peptide on passive avoidance learning in rats: a behavioral study. Avicenna J Neuro Psych Physiol. 2014;1(1):e18664.

Article  Google Scholar 

Eagle AL, Wang H, Robison AJ. Sensitive assessment of hippocampal learning using temporally dissociated passive avoidance task. Bio-Protoc. 2016;6(11):e1821.

Article  PubMed  Google Scholar 

Rial D, Castro AA, Machado N, Garc P, Goncalves FQ, Silva HB, Tomé AR, Köfalvi A, Corti O, Raisman-Vozari R, Cunha RA, Prediger RD. Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson’s disease. PLoS One. 2014;9(12):e114216.

Article  PubMed  PubMed Central  Google Scholar 

Ruan J, Yao Y. Behavioral tests in rodent models of stroke. Brain Hemorrhages. 2020;1(4):171–84.

Article  PubMed  PubMed Central  Google Scholar 

Deacon RM. Measuring motor coordination in mice. J Vis Exp. 2013;75:e2609.

Google Scholar 

Gurr E. Staining animal tissues: practical and theoretical. London Leonard Hill. 1962;1:99.

Google Scholar 

Armitage P, Berry G. Statistical methods in medical research. Oxford; Boston: Blackwell Scientific, Chicago, Ill. 1987;2:527-538

Xin YR, Jiang JX, Hu Y, Pan JP, Mi XN, Gao Q, Xiao F, Zhang W, Luo HM. The immune system drives synapse loss during lipopolysaccharide-induced learning and memory impairment in mice. Front Aging Neurosci. 2019;11:279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babaei P, Tehrani BS, Alizadeh A. Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer’s disease. Stem Cells Int. 2012;2012:1–8.

Article  Google Scholar 

Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant. 2013;22:S113–26.

Article  PubMed  Google Scholar 

Li B, Liu J, Gu G, Han X, Zhang Q, Zhang W. Impact of neural stem cell-derived extracellular vesicles on mitochondrial dysfunction, sirtuin 1 level, and synaptic deficits in Alzheimer’s disease. J Neurochem. 2020;154(5):502–18.

Comments (0)

No login
gif