Biodegradation of phthalic acid and terephthalic acid by Comamonas testosteroni strains

Abdoul Magid ASI, Islam MS, Chen Y, Weng L, Sun Y, Chang X, Zhou B, Ma J, Li Y (2021) Competitive adsorption of dibutyl phthalate (DBP) and Di (2-ethylhexyl) phthalate (DEHP) onto fresh and oxidized corncob biochar. Chemosphere 280:130639. https://doi.org/10.1016/j.chemosphere.2021.130639

Article  CAS  PubMed  Google Scholar 

Aksu D, Diallo MM, Şahar U, Uyaniker TA, Ozdemir G (2021a) High expression of ring-hydroxylating dioxygenase genes ensure efficient degradation of p-toluate, phthalate, and terephthalate by Comamonas testosteroni strain 3a2. Arch Microbiol 203:4101–4112. https://doi.org/10.1007/s00203-021-02395-3

Article  CAS  PubMed  Google Scholar 

Aksu D, Vural C, Karabey B, Ozdemir G (2021b) Biodegradation of terephthalic acid by ısolated active sludge microorganisms and monitoring of bacteria in a continuous stirred tank reactor. Brazilian Arch Biol Technol 64:1–10. https://doi.org/10.1590/1678-4324-2021200002

Article  CAS  Google Scholar 

Benjamin S, Pradeep S, Sarath Josh M, Kumar S (2015) A monograph on the remediation of hazardous phthalates. J Hazard Mater 298:58–72. https://doi.org/10.1016/j.jhazmat.2015.05.004

Article  CAS  PubMed  Google Scholar 

Bhattacharya P, Mukherjee D, Deb N, Swarnakar S, Banerjee S (2021) Indigenously developed CuO/TiO2 coated ceramic ultrafiltration membrane for removal of emerging contaminants like phthalates and parabens: toxicity evaluation in PA-1 cell line. Mater Chem Phys 258:123920. https://doi.org/10.1016/j.matchemphys.2020.123920

Article  CAS  Google Scholar 

Boll M, Geiger R, Junghare M, Schink B (2020) Microbial degradation of phthalates: biochemistry and environmental implications. Environ Microbiol Rep 12:3–15. https://doi.org/10.1111/1758-2229.12787

Article  CAS  PubMed  Google Scholar 

Carstens L, Cowan AR, Seiwert B, Schlosser D (2020) biotransformation of phthalate plasticizers and bisphenol A by marine-derived, freshwater, and terrestrial fungi. Front Microbiol 11:1–21. https://doi.org/10.3389/fmicb.2020.00317

Article  Google Scholar 

Cheshmazar E, Arfaeinia L, Vasseghian Y, Ramavandi B, Mordai M, Hashemi SE, Asgari E, Arfaeinia H, Dragoi EN, Khaneghah AM (2021) Phthalate acid esters in pickled vegetables packaged in polyethylene terephthalate container: occurrence, migration, and estrogenic activity-associated risk assessment. J Food Compos Anal 99:103880. https://doi.org/10.1016/j.jfca.2021.103880

Article  CAS  Google Scholar 

Chow J, Perez-Garcia P, Dierkes R, Streit WR (2023) Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb Biotechnol 16:195–217. https://doi.org/10.1111/1751-7915.14135

Article  CAS  PubMed  Google Scholar 

Dolatabadi M, Świergosz T, Ahmadzadeh S (2021) Electro-Fenton approach in oxidative degradation of dimethyl phthalate - the treatment of aqueous leachate from landfills. Sci Total Environ 772. https://doi.org/10.1016/j.scitotenv.2021.145323

Article  PubMed  Google Scholar 

Dutton JR, Venables WA, Sain CP (1995) Cornarnonas acidovorans UCCGI catabolizes o-phthalate via a 4,5=oxygenation pathway that is encoded on a 70 kbp section of plasmid pOPHl bounded by directly repeated sequences. Microbiology 141:1673–1682

Article  CAS  Google Scholar 

Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eaton RW, Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57. https://doi.org/10.1128/jb.151.1.48-57.1982

Article  CAS  PubMed  PubMed Central  Google Scholar 

Estévez-Danta A, Rodil R, Pérez-Castaño B, Cela R, Quintana JB, González-Mariño I (2021) Comprehensive determination of phthalate, terephthalate and di-iso-nonyl cyclohexane-1,2-dicarboxylate metabolites in wastewater by solid-phase extraction and ultra(high)-performance liquid chromatography-tandem mass spectrometry. Talanta 224:121912. https://doi.org/10.1016/j.talanta.2020.121912

Article  CAS  PubMed  Google Scholar 

Filardi T, Panimolle F, Lenzi A, Morano S (2020) Bisphenol a and phthalates in diet: an emerging link with pregnancy complications. Nutrients 12:1–15. https://doi.org/10.3390/nu12020525

Article  CAS  Google Scholar 

Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds- from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652

Article  CAS  PubMed  Google Scholar 

Fukuhara Y, Inakazu K, Kodama N, Kamimura N, Kasai D, Katayama Y, Fukuda M, Masai E (2010) Characterization of the isophthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 76:519–527. https://doi.org/10.1128/AEM.01270-09

Article  CAS  PubMed  Google Scholar 

Gao H, Wang Y, Wang Z, Wang Y, Tao F (2022) Prenatal phthalate exposure associated with age-specific alterations in markers of adiposity in offspring: a systematic review. Ecotoxicol Environ Saf 232:113247. https://doi.org/10.1016/j.ecoenv.2022.113247

Article  CAS  PubMed  Google Scholar 

Golestanzadeh M, Riahi R, Kelishadi R (2019) Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: a systematic review and meta-analysis. Environ Sci Pollut Res 26:35670–35686. https://doi.org/10.1007/s11356-019-06589-7

Article  CAS  Google Scholar 

González-Escobar JL, Pereyra-Camacho MA, De Léon-Rodríguez A, Grajales-Lagunes A, Reyes-Agüero A, Chagolla-López A, de-la-Rosa APB (2020) Biodegradation of recalcitrant compounds and phthalates by culturable bacteria isolated from Liometopum apiculatum microbiota. World J Microbiol Biotechnol 36:1–13. https://doi.org/10.1007/s11274-020-02850-1

Article  CAS  Google Scholar 

Henderson AL, Colaiácovo MP (2021) Exposure to phthalates: germline dysfunction and aneuploidy. Prenat Diagn 41:610–619. https://doi.org/10.1002/pd.5921

Article  PubMed  Google Scholar 

Hong-bo Z, Feng L, Pei-lei H, De-cai J, Hong-qiang R, Jing Z, Guan-zhou Q (2009) Aerobic biodegradation of di-n-butyl phthalate by Xiangjiang River sediment and microflora analysis ZHOU. J Cent South Univ Technol 16:948–953. https://doi.org/10.1007/s11771

Article  Google Scholar 

Hu R, Zhao H, Xu X, Wang Z, Yu K, Shu L, Yan Q, Wu B, Mo C, He Z, Wang C (2021) Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities. Environ Int 154:106560. https://doi.org/10.1016/j.envint.2021.106560

Article  CAS  PubMed  Google Scholar 

Hyppólito MP, Perini JAL, da Silva BF, Jorge SMA, Zanoni MVB (2022) Modification of Ti/TiO2NT with ZrO2 nanoparticles to enhance photoelectrocatalytic performance in removal of dibutyl phthalate. Environ Sci Pollut Res 42:64112–64123. https://doi.org/10.1007/s11356-022-20296-w

Article  CAS  Google Scholar 

Kamimura N, Aoyama T, Yoshida R, Takahashi K, Kasai D, Abe T, Mase K, Katayama Y, Fukuda M, Masai E (2010) Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene. Appl Environ Microbiol 76:8093–8101. https://doi.org/10.1128/AEM.01863-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur R, Kumari A, Rajput VD, Minkina T, Kaur R (2023) Biodegradation of phthalates and metabolic pathways: an overview. Environ Sustain 6:303–318. https://doi.org/10.1007/s42398-023-00268-7

Article  CAS  Google Scholar 

Kotowska U, Kapelewska J, Sawczuk R (2020) Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environ Pollut 267:115643. https://doi.org/10.1016/j.envpol.2020.115643

Article  CAS  PubMed  Google Scholar 

Kumar V, Sharma N, Maitra SS (2017) Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F. Biotechnol Reports 15:1–10. https://doi.org/10.1016/j.btre.2017.04.002

Article  Google Scholar 

Li J, Luo F, Chu D, Xuan H, Dai X (2017) Complete degradation of dimethyl phthalate by a Comamonas testosterone strain. J Basic Microbiol 57:941–949. https://doi.org/10.1002/jobm.201700296

Article  CAS  PubMed 

Comments (0)

No login
gif