External Validation of Predictive Models for Diagnosis, Management and Severity of Pediatric Appendicitis

Abstract

Background Appendicitis is a common condition among children and adolescents. Machine learning models can offer much-needed tools for improved diagnosis, severity assessment and management guidance for pediatric appendicitis. However, to be adopted in practice, such systems must be reliable, safe and robust across various medical contexts, e.g., hospitals with distinct clinical practices and patient populations. Methods We performed external validation of models predicting the diagnosis, management and severity of pediatric appendicitis. Trained on a cohort of 430 patients admitted to the Children's Hospital St. Hedwig (Regensburg, Germany), the models were validated on an independent cohort of 301 patients from the Florence-Nightingale-Hospital (Dusseldorf, Germany). The data included demographic, clinical, scoring, laboratory and ultrasound parameters. In addition, we explored the benefits of model retraining and inspected variable importance. Results The distributions of most parameters differed between the datasets. Consequently, we saw a decrease in predictive performance for diagnosis, management and severity across most metrics. After retraining with a portion of external data, we observed gains in performance, which, nonetheless, remained lower than in the original study. Notably, the most important variables were consistent across the datasets. Conclusions While the performance of transferred models was satisfactory, it remained lower than on the original data. This study demonstrates challenges in transferring models between hospitals, especially when clinical practice and demographics differ or in the presence of externalities such as pandemics. We also highlight the limitations of retraining as a potential remedy since it could not restore predictive performance to the initial level.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

N/A

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study, including data acquisition and transfer, was approved by the Ethics Committee of the University of Regensburg (18-1063-101, 18-1063-3-101) and was performed in accordance with the relevant guidelines and regulations.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Comments (0)

No login
gif