Huumonen S, Suominen A, Vehkalahti M. Prevalence of apical periodontitis in root filled teeth: findings from a nationwide survey in finland. Int Endodontic J. 2017;50(3):229–36.
Nair PR. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 2004;15(6):348–81.
Article CAS PubMed Google Scholar
Antony DP, Thomas T, Nivedhitha M. Two-dimensional periapical, panoramic radiography versus three-dimensional cone-beam computed tomography in the detection of periapical lesion after endodontic treatment: a systematic review. Cureus. 2020. https://doi.org/10.7759/cureus.7736.
Article PubMed PubMed Central Google Scholar
International atomic energy agency, radiation protection in dental radiology No.108 [IAEA Preprint]. Safety reports series. 2021 53:(23) 81.
Mazzi-Chaves JF, et al. Cone-beam computed tomographic–based assessment of filled C-shaped canals: artifact expression of cone-beam computed tomography as opposed to micro–computed tomography and nano–computed tomography. J Endodontic. 2020;46(11):1702–11.
Corbella S, Srinivas S, Cabitza F. Applications of deep learning in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):225–38.
Arsiwala-Scheppach LT, et al. Machine learning in dentistry: a scoping review. J Clin Med. 2023;12(3):937.
Article PubMed PubMed Central Google Scholar
Pathak AR, Pandey M, Rautaray S. Application of deep learning for object detection. Procedia computer sci. 2018;132:1706–17.
Thanh MTG, et al. Deep learning application in dental caries detection using intraoral photos taken by smartphones. Appl Sci. 2022;12(11):5504.
Krois J, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019;9(1):8495.
Article PubMed PubMed Central Google Scholar
Moidu NP, et al. Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system. Clin Oral Investig. 2022;26(1):651–8.
Ørstavik D, Kerekes K, Eriksen HM. The periapical index: a scoring system for radiographic assessment of apical periodontitis. Dent Traumatol. 1986;2(1):20–34.
Matijević J, et al. Prevalence of apical periodontitis and quality of root canal fillings in population of Zagreb Croatia: a cross-sectional study. Croat Med J. 2011;52(6):679–87.
Article PubMed PubMed Central Google Scholar
Sidaravicius B, Aleksejuniene J, Eriksen HJDT. Endodontic treatment and prevalence of apical periodontitis in an adult population of Vilnius. Lithuania. 1999;15(5):210–5.
Tsuneishi M, et al. Radiographic evaluation of periapical status and prevalence of endodontic treatment in an adult Japanese population. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodontol. 2005;100(5):631–5.
Correia-Sousa J, et al. Apical periodontitis and related risk factors: Cross-sectional study. Revis Port de Estomatol, Med Dentria e Cir Maxilofac. 2015;56(4):226–32.
Sadr S, et al. Deep learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy. J Endod. 2023;49(3):248-261.e3.
Ekert T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917-922.e5.
Li C-W, et al. Detection of dental apical lesions using CNNs on periapical radiograph. Sensors. 2021;21(21):7049.
Article PubMed PubMed Central Google Scholar
Çelik B, et al. The role of deep learning for periapical lesion detection on panoramic radiographs. Dentomaxillofacial Radiol. 2023. https://doi.org/10.1259/dmfr.20230118.
Ren S, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv neural inf process syst. 2015;39:1137–49.
Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv preprint. arXiv:2004.10934.
Peretz B, Gotler M, Kaffe I. Common errors in digital panoramic radiographs of patients with mixed dentition and patients with permanent dentition. Int J Dent. 2012;2012:584138.
Article PubMed PubMed Central Google Scholar
Brynolf I. A histological and roentgenological study of the periapical region of human upper incisors, vol. 18. Almqvist & Wiksell; 1967.
Zehnder M, Belibasakis GN. A critical analysis of research methods to study clinical molecular biomarkers in endodontic research. Int Endod J. 2022;55:37–45.
Fatima A, et al. Deep learning-based multiclass instance segmentation for dental lesion detection. Healthcare. 2023. https://doi.org/10.3390/healthcare11030347.
Article PubMed PubMed Central Google Scholar
Shafi I, et al. Teeth lesion detection using deep learning and the internet of things post-COVID-19. Sensors. 2023;23(15):6837.
Comments (0)