Alessandrini M, Micarelli A, Chiaravalloti A, Candidi M, Bruno E, Di Pietro B, Schillaci O, Pagani M (2014) Cortico-subcortical metabolic correlates of olfactory processing in healthy resting subjects. Sci Rep 4:5146. https://doi.org/10.1038/srep05146
Article PubMed PubMed Central CAS Google Scholar
Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15(4):239–246. https://doi.org/10.4103/0972-2327.104323
Article PubMed PubMed Central Google Scholar
Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. NeuroImage 13(5):903–919. https://doi.org/10.1006/nimg.2001.0746
Article PubMed CAS Google Scholar
Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007
Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018
Baba T, Kikuchi A, Hirayama K, Nishio Y, Hosokai Y, Kanno S, Hasegawa T, Sugeno N, Konno M, Suzuki K, Takahashi S, Fukuda H, Aoki M, Itoyama Y, Mori E, Takeda A (2012) Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 135(Pt 1):161–169. https://doi.org/10.1093/brain/awr321
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH (2021) Imaging the Substantia Nigra in Parkinson Disease and other parkinsonian syndromes. Radiology 300(2):260–278. https://doi.org/10.1148/radiol.2021203341
Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042
Bender R, Lange S (2001) Adjusting for multiple testing–when and how? J Clin Epidemiol 54(4):343–349. https://doi.org/10.1016/s0895-4356(00)00314-0
Article PubMed CAS Google Scholar
Bohnen NI, Gedela S, Herath P, Constantine GM, Moore RY (2008) Selective hyposmia in Parkinson disease: association with hippocampal dopamine activity. Neurosci Lett 447(1):12–16. https://doi.org/10.1016/j.neulet.2008.09.070
Article PubMed PubMed Central CAS Google Scholar
Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, Johannesson M, Kirchler M, Iwanir R, Mumford JA, Adcock RA, Avesani P, Baczkowski BM, Bajracharya A, Bakst L, Ball S, Barilari M, Bault N, Beaton D, Beitner J, Benoit RG, Schonberg T (2020) Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582(7810):84–88. https://doi.org/10.1038/s41586-020-2314-9
Article PubMed PubMed Central CAS Google Scholar
Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, Voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging 18(1):32–42. https://doi.org/10.1109/42.750253
Article PubMed CAS Google Scholar
Burwell RD (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol 437(1):17–41. https://doi.org/10.1002/cne.1267
Article PubMed CAS Google Scholar
Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12(8):811–821. https://doi.org/10.1016/S1474-4422(13)70118-2
Article PubMed CAS Google Scholar
Calhoun VD, Wager TD, Krishnan A, Rosch KS, Seymour KE, Nebel MB, Mostofsky SH, Nyalakanai P, Kiehl K (2017) The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Hum Brain Mapp 38(11):5331–5342. https://doi.org/10.1002/hbm.23737
Article PubMed PubMed Central Google Scholar
Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA (2003) Parkinson’s disease is associated with hippocampal atrophy. Mov Disorders: Official J Mov Disorder Soc 18(7):784–790. https://doi.org/10.1002/mds.10444
Campabadal A, Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C (2017) Brain correlates of progressive olfactory loss in Parkinson’s disease. Parkinsonism Relat Disord 41:44–50. https://doi.org/10.1016/j.parkreldis.2017.05.005
Chai XJ, Castañón AN, Ongür D, Whitfield-Gabrieli S (2012) Anticorrelations in resting state networks without global signal regression. NeuroImage 59(2):1420–1428. https://doi.org/10.1016/j.neuroimage.2011.08.048
Chiacchiaretta P, Ferretti A (2015) Resting state BOLD functional connectivity at 3T: spin echo versus gradient echo EPI. PLoS ONE 10(3):e0120398. https://doi.org/10.1371/journal.pone.0120398
Article PubMed PubMed Central CAS Google Scholar
Chumbley J, Worsley K, Flandin G, Friston K (2010) Topological FDR for neuroimaging. NeuroImage 49(4):3057–3064. https://doi.org/10.1016/j.neuroimage.2009.10.090
Article PubMed CAS Google Scholar
Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205
Article PubMed CAS Google Scholar
Compston A (2010) The hippocampus and the sense of smell. A review, by Alf Brodal. Brain 1947: 70; 179–222. Brain: a journal of neurology, 133(9), 2509–2513. https://doi.org/10.1093/brain/awq242
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
Dickson DW (2018) Neuropathology of Parkinson disease. Parkinsonism Relat Disord Suppl 1S30–S33. https://doi.org/10.1016/j.parkreldis.2017.07.033. 46 Suppl 1
Dintica CS, Marseglia A, Rizzuto D, Wang R, Seubert J, Arfanakis K, Bennett DA, Xu W (2019) Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain. Neurology 92(7):e700–e709. https://doi.org/10.1212/WNL.0000000000006919
Article PubMed PubMed Central Google Scholar
Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Reviews Neurol 8(6):329–339. https://doi.org/10.1038/nrneurol.2012
Du S, Wang Y, Li G, Wei H, Yan H, Li X, Wu Y, Zhu J, Wang Y, Cai Z, Wang N (2023) Olfactory functional covariance connectivity in Parkinson’s disease: evidence from a Chinese population. Front Aging Neurosci 14:1071520. https://doi.org/10.3389/fnagi.2022.1071520
Article PubMed PubMed Central Google Scholar
Ercoli T, Masala C, Cadeddu G, Mascia MM, Orofino G, Gigante AF, Solla P, Defazio G, Rocchi L (2022) Does olfactory dysfunction correlate with Disease Progression in Parkinson’s Disease? A systematic review of the current literature. Brain Sci 12(5):513. https://doi.org/10.3390/brainsci12050513
Article PubMed PubMed Central CAS Google Scholar
Fan W, Li H, Li H, Li Y, Wang J, Jia X, Yang Q (2022) Association between Functional Connectivity of Entorhinal Cortex and olfactory performance in Parkinson’s Disease. Brain Sci 12(8):963. https://doi.org/10.3390/brainsci12080963
Article PubMed PubMed Central Google Scholar
Ferdon S, Murphy C (2003) The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. NeuroImage 20(1):12–21.
Comments (0)