Abid Z, Roy A, Herbstman JB, Ettinger AS (2014) Urinary polycyclic aromatic hydrocarbon metabolites and attention/deficit hyperactivity disorder, learning disability, and special education in U.S. children aged 6 to 15. J Environ Public Health 2014:628508. https://doi.org/10.1155/2014/628508
Achenbach TM (2001) Youth Self-Report. University of Vermont Department of Psychiatry, Burlington, VT
Alghamdi MA, Alam MS, Stark C (2015) Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure. Environ Res 140:495–501. https://doi.org/10.1016/j.envres.2015.04.023
Birmaher B, Brent DA, Chiappetta L, Bridge J, Monga S, Baugher M (1999) Psychometric properties of the screen for child anxiety related Emotional disorders (SCARED): a replication study. J Am Acad Child Adolesc Psychiatry 38(10):1230–1236. https://doi.org/10.1097/00004583-199910000-00011
Brown LA, Khousbouei H, Goodwin JS (2007) Down-regulation of early ionotrophic glutamate receptor subunit developmental expression as a mechanism for observed plasticity deficits following gestational exposure to benzo(a)pyrene. Neurotoxicology 28(5):965–978. https://doi.org/10.1016/j.neuro.2007.05.005
Chen C, Tang Y, Jiang X (2012) Early postnatal benzo(a)pyrene exposure in Sprague-Dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicol Sci 125(1):248–261. https://doi.org/10.1093/toxsci/kfr265
Cuijpers P, Javed A, Bhui K (2023) The WHO World Mental Health Report: a call for action. Br J Psychiatry 222(6):227–229. https://doi.org/10.1192/bjp.2023.9
Fang B, Bravo MA, Wang H (2022) Polycyclic aromatic hydrocarbons are associated with later puberty in girls: a longitudinal study. Sci Total Environ 846:157497. https://doi.org/10.1016/j.scitotenv.2022.157497
Genkinger JM, Stigter L, Jedrychowski W (2015) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure, antioxidant levels and behavioral development of children ages 6–9. Environ Res 140:136–144. https://doi.org/10.1016/j.envres.2015.03.017
Gunier RB, Reynolds P, Hurley SE (2006) Estimating exposure to polycyclic aromatic hydrocarbons: a comparison of survey, biological monitoring, and geographic information system-based methods. Cancer Epidemiol Biomarkers Prev 15(7):1376–1381. https://doi.org/10.1158/1055-9965.Epi-05-0799
Guo Y, Wu K, Huo X, Xu X (2011) Sources distribution, and toxicity of polycyclic aromatic hydrocarbons. J Environ Health 73(9):22–25
Guo J, Riley KW, Durham T (2022) Association Studies of Environmental Exposures, DNA methylation and children’s cognitive, behavioral, and Mental Health problems. Front Genet 13:871820. https://doi.org/10.3389/fgene.2022.871820
Gur RC, Gunning-Dixon F, Bilker WB, Gur RE (2002) Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb Cortex 12(9):998–1003. https://doi.org/10.1093/cercor/12.9.998
Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM (2004) Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 112(17):1734–1740. https://doi.org/10.1289/ehp.7212
Huijun L, Prevatt F (2008) Fears and related anxieties in Chinese High School Students. Sch Psychol Int 29(1):89–104. https://doi.org/10.1177/0143034307088505
James DC, Lessen R, American Dietetic Association (2009) Position of the American Dietetic Association: promoting and supporting breastfeeding. J Am Diet Assoc 109(11):1926–1942. https://doi.org/10.1016/j.jada.2009.09.018
Jung KH, Lovinsky-Desir S, Perzanowski M (2015) Repeatedly high polycyclic aromatic hydrocarbon exposure and cockroach sensitization among inner-city children. Environ Res 140:649–656. https://doi.org/10.1016/j.envres.2015.05.027
Kovacs M (1992) Children’s Depression Inventory (CDI). Psychol Assess 4(1):125–135. https://doi.org/10.1037/1040-3590.4.1.125
Li YY, Liu Q, Huang X, Yang B, Fang B, Sheng LL (2020) Predictive effect of psychological stress in early puberty on subsequent anxiety and depression. Zhongguo Xuexiao Weisheng 41:830–832. https://doi.org/10.16835/j.cnki.1000-9817.2020.06.008
Lin YC, Wu CY, Hu CH, Pai TW, Chen YR, Wang WD (2020) Integrated Hypoxia Signaling and oxidative stress in Developmental Neurotoxicity of Benzo[a]pyrene in zebrafish embryos. Antioxid (Basel) 9(8). https://doi.org/10.3390/antiox9080731
Liu Y, Zhu L, Shen X (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol 35(5):840–844. https://doi.org/10.1021/es001354t
Liu S, Liu Q, Ostbye T (2017) Levels and risk factors for urinary metabolites of polycyclic aromatic hydrocarbons in children living in Chongqing, China. Sci Total Environ 598:553–561. https://doi.org/10.1016/j.scitotenv.2017.04.103
Liu XY, Wang BL, Yi MJ, Zhang FH (2019) [Association of exposure to polycyclic aromatic hydrocarbons during pregnancy with autism spectrum disorder-related behaviors in toddlers: a birth cohort study]. Zhongguo Dang Dai Er Ke Za Zhi 21(4):332–336. https://doi.org/10.7499/j.issn.1008-8830.2019.04.006
Liu R, DeSerisy M, Fox NA (2022) Prenatal exposure to air pollution and maternal stress predict infant individual differences in reactivity and regulation and socioemotional development. J Child Psychol Psychiatry 63(11):1359–1367. https://doi.org/10.1111/jcpp.13581
Margolis AE, Herbstman JB, Davis KS (2016) Longitudinal effects of prenatal exposure to air pollutants on self-regulatory capacities and social competence. J Child Psychol Psychiatry 57(7):851–860. https://doi.org/10.1111/jcpp.12548
Margolis AE, Liu R, Conceição VA (2022) Convergent neural correlates of prenatal exposure to air pollution and behavioral phenotypes of risk for internalizing and externalizing problems: potential biological and cognitive pathways. Neurosci Biobehav Rev 137:104645. https://doi.org/10.1016/j.neubiorev.2022.104645
Miao Q, Bouchard M, Chen D, Burstyn I, Spinelli JJ, Aronson KJ (2014) Assessing traffic and polycyclic aromatic hydrocarbon exposure in Montreal, Canada. Sci Total Environ 470–471:945–953. https://doi.org/10.1016/j.scitotenv.2013.10.030
Onyemauwa F, Rappaport SM, Sobus JR, Gajdosová D, Wu R, Waidyanatha S (2009) Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr B Analyt Technol Biomed Life Sci 877(11–12):1117–1125. https://doi.org/10.1016/j.jchromb.2009.02.067
Patel B, Das SK, Das S, Das L, Patri M (2016) Neonatal exposure to benzo[a]pyrene induces oxidative stress causing altered hippocampal cytomorphometry and behavior during early adolescence period of male Wistar rats. Int J Dev Neuroscience: Official J Int Soc Dev Neurosci 50:7–15. https://doi.org/10.1016/j.ijdevneu.2016.01.006
Peiffer J, Cosnier F, Grova N (2013) Neurobehavioral toxicity of a repeated exposure (14 days) to the airborne polycyclic aromatic hydrocarbon fluorene in adult Wistar male rats. PLoS ONE 8(8):e71413. https://doi.org/10.1371/journal.pone.0071413
Perera F, Tang D, Whyatt R, Lederman SA, Jedrychowski W (2005) DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China. Cancer Epidemiol Biomarkers Prev 14(3):709–714. https://doi.org/10.1158/1055-9965.Epi-04-0457
Perera FP, Wang S, Vishnevetsky J (2011) Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York City children. Environ Health Perspect 119(8):1176–1181. https://doi.org/10.1289/ehp.1002705
Perera FP, Tang D, Wang S (2012) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ Health Perspect 120(6):921–926. https://doi.org/10.1289/ehp.1104315
Perera FP, Wang S, Rauh V (2013) Prenatal exposure to air pollution, maternal psychological distress, and child behavior. Pediatrics 132(5):e1284–1294. https://doi.org/10.1542/peds.2012-3844
Peterson BS, Rauh VA, Bansal R (2015) Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 72(6):531–540. https://doi.org/10.1001/jamapsychiatry.2015.57
Comments (0)