The relationship of short-term exposure to meteorological factors on diabetes mellitus mortality risk in Hefei, China: a time series analysis

Al-Tamer YY, Al-Hayali JMT, Al-Ramadhan EAH (2008) Seasonality of hypertens. J Clin Hypertension 10(2):125–129. https://doi.org/10.1111/j.1751-7176.2008.07416.x

Article  CAS  Google Scholar 

Badpa M, Schneider A, Schwettmann L, Thorand B, Wolf K, Peters A (2024) Air pollution, traffic noise, greenness, and temperature and the risk of incident type 2 diabetes: results from the KORA cohort study. Environ Epidemiol (Philadelphia, Pa.) 8(2):302. https://doi.org/10.1097/EE9.0000000000000302

Article  Google Scholar 

Blauw LL, Aziz NA, Tannemaat MR, Blauw CA, de Craen AJ, Pijl H, Rensen PCN (2017) Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open Diabetes Res Care 5(1):e000317. https://doi.org/10.1136/bmjdrc-2016-000317

Article  Google Scholar 

Bull GM (1980) The weather and deaths from pneumonia. The Lancet 315(8183):1405–1408. https://doi.org/10.1016/S0140-6736(80)92666-5

Article  Google Scholar 

Dales RE, Cakmak S, Vidal CB, Rubio MA (2012) Air pollution and hospitalization for acute complications of diabetes in Chile. Environ Int 46:1–5. https://doi.org/10.1016/j.envint.2012.05.002

Article  CAS  Google Scholar 

de Wit C, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions—fact or fiction? Cell Commun Adhes 15(3):231–245. https://doi.org/10.1080/15419060802440260

Article  CAS  Google Scholar 

Ding Z, Guo P, Xie F, Chu H, Li K, Pu J, Pang S, Dong H, Liu Y, Pi F, Zhang Q (2015) Impact of diurnal temperature range on mortality in a high plateau area in southwest China: a time series analysis. Sci Total Environ 526:358–365. https://doi.org/10.1016/j.scitotenv.2015.05.012

Article  CAS  Google Scholar 

Du Z, Lawrence WR, Zhang W, Zhang D, Yu S, Hao Y (2019) Interactions between climate factors and air pollution on daily HFMD cases: a time series study in Guangdong, China. Sci Total Environ 656:1358–1364. https://doi.org/10.1016/j.scitotenv.2018.11.391

Article  CAS  Google Scholar 

Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev. https://doi.org/10.1152/physrev.00045.2011

Article  Google Scholar 

Forst T, Caduff A, Talary M, Weder M, Brändle M, Kann P, Flacke F, Friedrich Ch, Pfützner A (2006) Impact of environmental temperature on skin thickness and microvascular blood flow in subjects with and without diabetes. Diabetes Technol Ther 8(1):94–101. https://doi.org/10.1089/dia.2006.8.94

Article  CAS  Google Scholar 

Garrett AT, Rehrer NJ, Patterson MJ (2011) Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Medicine (Auckland, N.Z.) 41(9):757–771. https://doi.org/10.2165/11587320-000000000-00000

Article  Google Scholar 

Gasparrini A (2011) Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 43(8):1–20

Article  Google Scholar 

Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, De Sario M, Bell ML, Guo YLL, Wu C, Kan H, Yi SM, De Sousa ZSCM, Saldiva PHN, Armstrong B (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet (London, England) 386(9991):369–375. https://doi.org/10.1016/S0140-6736(14)62114-0

Article  Google Scholar 

Greenfield AM, Alba BK, Giersch GEW, Seeley AD (2023) Sex differences in thermal sensitivity and perception: implications for behavioral and autonomic thermoregulation. Physiol Behav 263:114126. https://doi.org/10.1016/j.physbeh.2023.114126

Article  CAS  Google Scholar 

Hackett RA, Steptoe A (2017) Type 2 diabetes mellitus and psychological stress—a modifiable risk factor. Nat Rev Endocrinol 13(9):547–560. https://doi.org/10.1038/nrendo.2017.64

Article  Google Scholar 

He X, Zhai S, Liu X, Liang L, Song G, Song H, Kong Y (2022) Interactive short-term effects of meteorological factors and air pollution on hospital admissions for cardiovascular diseases. Environ Sci Pollut Res Int 29(45):68103–68117. https://doi.org/10.1007/s11356-022-20592-5

Article  CAS  Google Scholar 

Huang Y, Yang J, Chen J, Shi H, Lu X (2022) Association between ambient temperature and age-specific mortality from the elderly: epidemiological evidence from the Chinese prefecture with most serious aging. Environ Res 211:113103. https://doi.org/10.1016/j.envres.2022.113103

Article  CAS  Google Scholar 

Isaksen TB, Yost MG, Hom EK, Ren Y, Lyons H, Fenske RA (2015) Increased hospital admissions associated with extreme-heat exposure in King County, Washington, 1990–2010. Rev Environ Health 30(1):51–64. https://doi.org/10.1515/reveh-2014-0050

Article  Google Scholar 

Kaciuba-Uscilko H, Grucza R (2001) Gender differences in thermoregulation. Curr Opin Clin Nutr Metab Care 4(6):533–536. https://doi.org/10.1097/00075197-200111000-00012

Article  CAS  Google Scholar 

Keatinge WR, Coleshaw SR, Easton JC, Cotter F, Mattock MB, Chelliah R (1986) Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis. Am J Med 81(5):795–800. https://doi.org/10.1016/0002-9343(86)90348-7

Article  CAS  Google Scholar 

Kumar A, Gangwar R, Zargar AA, Kumar R, Sharma A (2024) Prevalence of diabetes in India: a review of IDF diabetes atlas 10th edition. Curr Diabetes Rev 20(1):e130423215752. https://doi.org/10.2174/1573399819666230413094200

Article  Google Scholar 

Lee W, Kim Y, Sera F, Gasparrini A, Park R, Michelle Choi H, Prifti K, Bell ML, Abrutzky R, Guo Y, Tong S, de Sousa ZSCM, Nascimento Saldiva PH, Lavigne E, Orru H, Indermitte E, Jaakkola JJK, Ryti NRI, Pascal M, Kim H (2020) Projections of excess mortality related to diurnal temperature range under climate change scenarios: a multi-country modelling study. The Lancet. Planetary Health 4(11):e512–e521. https://doi.org/10.1016/S2542-5196(20)30222-9

Article  Google Scholar 

Lin Y, Zhou S, Liu H, Cui Z, Hou F, Feng S, Zhang Y, Liu H, Lu C, Yu P (2020) Risk analysis of air pollution and meteorological factors affecting the incidence of diabetes in the elderly population in Northern China. J Diabetes Res 2020:3673980. https://doi.org/10.1155/2020/3673980

Article  CAS  Google Scholar 

Lontchi-Yimagou E, Tsalefac M, Tapinmene LMT, Noubiap JJN, Balti EV, Nguewa J-L, Dehayem M, Sobngwi E (2016) Seasonality in diabetes in Yaounde, Cameroon: a relation with precipitation and temperature. BMC Public Health 16:470. https://doi.org/10.1186/s12889-016-3090-1

Article  Google Scholar 

Martinez-Nicolas A, Meyer M, Hunkler S, Madrid JA, Rol MA, Meyer AH, Schötzau A, Orgül S, Kräuchi K (2015) Daytime variation in ambient temperature affects skin temperatures and blood pressure: ambulatory winter/summer comparison in healthy young women. Physiol Behav 149:203–211. https://doi.org/10.1016/j.physbeh.2015.06.014

Article  CAS  Google Scholar 

Mei Y, Li A, Zhao M, Xu J, Li R, Zhao J, Zhou Q, Ge X, Xu Q (2023) Associations and burdens of relative humidity with cause-specific mortality in three Chinese cities. Environ Sci Pollut Res Int 30(2):3512–3526. https://doi.org/10.1007/s11356-022-22350-z

Article  Google Scholar 

Meigs JB (2019) The genetic epidemiology of type 2 diabetes: opportunities for health translation. Curr DiabRep 19(8):62. https://doi.org/10.1007/s11892-019-1173-y

Article  Google Scholar 

Molina-Vega M, Gutiérrez-Repiso C, Muñoz-Garach A, Lima-Rubio F, Morcillo S, Tinahones FJ, Picón-César MJ (2020) Relationship between environmental temperature and the diagnosis and treatment of gestational diabetes mellitus: an observational retrospective study. Sci Total Environ 744:140994. https://doi.org/10.1016/j.scitotenv.2020.140994

Article  CAS  Google Scholar 

Okamoto-Mizuno K, Mizuno K (2012) Effects of thermal environment on sleep and circadian rhythm. J Physiol Anthropol 31(1):14. https://doi.org/10.1186/1880-6805-31-14

Article  Google Scholar 

Pace NP, Vassallo J, Calleja-Agius J (2021) Gestational diabetes, environmental temperature and climate factors—from epidemiological evidence to physiological mechanisms. Early Human Dev 155:105219. https://doi.org/10.1016/j.earlhumdev.2020.105219

Article  CAS  Google Scholar 

Pei Y, Zhu Y, Liu S, Xie M (2021) Industrial agglomeration and environmental pollution: based on the specialized and diversified agglomeration in the Yangtze River Delta. Environ Dev Sustain 23(3):4061–4085. https://doi.org/10.1007/s10668-020-00756-4

Article  Google Scholar 

Petrofsky J, Berk L, Alshammari F, Lee H, Hamdan A, Yim JE, Patel D, Kodawala Y, Shetye G, Chen W-T, Moniz H, Pathak K, Somanaboina K, Desai R, Dave B, Malthane S, Alshaharani M, Neupane S, Shenoy S, Nevgi B, Cho S, Al-Nakhli H (2012) The effect of moist air on skin blood flow and temperature in subjects with and without diabetes. Diabetes Technol Ther 14(2):105–116. https://doi.org/10.1089/dia.2011.0128

Article  Google Scholar 

Qian N, Xu R, Wei Y, Li Z, Wang Z, Guo C, Zhu X, Peng J, Qian Y (2023) Influence of temperature on the risk of gestational diabetes mellitus and hypertension in different pregnancy trimesters. Sci Total Environ 899:165713. https://doi.org/10.1016/j.scitotenv.2023.165713

Article  CAS  Google Scholar 

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 157:107843.

Comments (0)

No login
gif