Abdelmigid HM, Hussien NA, Alyamani AA, Morsi MM, Alsufyani NM, Kadi HA (2022) Green synthesis of zinc oxide nanoparticles using pomegranate fruit peel and solid coffee grounds vs. chemical method of synthesis, with their biocompatibility and antibacterial properties investigation. Molecules. https://doi.org/10.3390/molecules27041236
Article PubMed PubMed Central Google Scholar
Abebe B, Murthy HCA, Amare E (2020a) Enhancing the photocatalytic efficiency of ZnO: defects, heterojunction, and optimization. Environ Nanotechnol Monit Manag 14:100336. https://doi.org/10.1016/j.enmm.2020.100336
Abebe B, Zereffa EA, Tadesse A, Murthy HCA (2020b) A review on enhancing the antibacterial activity of ZnO: mechanisms and microscopic investigation. Nano Res Lett. https://doi.org/10.1186/s11671-020-03418-6
Acharya TR, Lamichhane P, Wahab R, Chaudhary DK, Shrestha B, Joshi LP, Kaushik NK, Choi EH (2021) Study on the synthesis of zno nanoparticles using azadirachta indica extracts for the fabrication of a gas sensor. Molecules. https://doi.org/10.3390/molecules26247685
Article PubMed PubMed Central Google Scholar
Aiswarya Devi S, Harshiny M, Udaykumar S, Gopinath P, Matheswaran M (2017) Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits. Toxicol Res 6(6):854–865. https://doi.org/10.1039/c7tx00093f
Alamdari S, Ghamsari MS, Lee C, Han W, Park H, Tafreshi MJ, Afarideh H (2020) Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl Sci 10(3620):1–19. https://doi.org/10.3390/app10103620
Ali J, Bibi S, Jatoi WB, Tuzen M, Jakhrani MA, Feng X, Saleh TA (2023) Green synthesized zinc oxide nanostructures and their applications in dye-sensitized solar cells and photocatalysis: a review. Mater Today Commun 36:106840. https://doi.org/10.1016/j.mtcomm.2023.106840
Alshammari A, Köckritz A, Kalevaru VN, Martin A (2010) Influence of precursor on the particle size and stability of colloidal gold nanoparticles. In: Gaigneaux EM, Devillers M, Hermans S, Jacobs PA, Martens JA, Ruiz C (eds) Scientific bases for the preparation of heterogeneous catalysts. Elsevier, Amsterdam
Ansari SA, Khan MM, Kalathil S, Nisar A, Lee J, Cho MH (2013) Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5(19):9238–9246. https://doi.org/10.1039/C3NR02678G
Article CAS PubMed Google Scholar
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S (2022) Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J Hazardous Mater 427:128033. https://doi.org/10.1016/j.jhazmat.2021.128033
Chauhan M, Singh VK (2023) Growth of well-arrayed ZnO nanorods over no-core fiber for the measurement of glucose solution concentration. J Mater Sci: Mater Electron 34(5):441. https://doi.org/10.1007/s10854-023-09898-3
Eskander J, Lavaud C, Harakat D (2011) Steroidal saponins from the leaves of Beaucarnea recurvata. Phytochemistry 72(9):946–951. https://doi.org/10.1016/j.phytochem.2011.03.004
Article CAS PubMed Google Scholar
Farooq MH, Aslam I, Anam HS, Tanveer M, Ali Z, Ghani U, Boddula R (2019) Improved photocatalytic performance of reduced zinc oxide (ZnO) novel morphology of astray like microstructure under solar light irradiation. Mater Sci Energy Technol 2(2):181–186. https://doi.org/10.1016/j.mset.2019.01.005
Gan PP, Ng SH, Huang Y, Li SFY (2012) Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresourc Technol 113:132–135. https://doi.org/10.1016/j.biortech.2012.01.015
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB (2021) A mini review of antibacterial properties of ZnO nanoparticles. Front Phys 9(March):1–12. https://doi.org/10.3389/fphy.2021.641481
Guleria G, Thakur S, Shandilya M, Sharma S, Thakur S, Kalia S (2023) Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiol Biochem 194:533–549. https://doi.org/10.1016/j.plaphy.2022.12.004
Article CAS PubMed Google Scholar
Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13(3):59–81. https://doi.org/10.1080/17518253.2020.1802517
Ikhuoria EU, Uwidia IE, Otabor GO, Ifijen IH (2023) Comparative analysis of magnesium oxide nanoparticles biosynthesized from rubber seed shell and rubber leaf extracts. Biomed Mater Dev. https://doi.org/10.1007/s44174-023-00139-z
Kainat S, Gilani SR, Asad F, Khalid MZ, Khalid W, Ranjha MMAN, Bangar SP, Lorenzo JM (2022) Determination and comparison of phytochemicals, phenolics, and flavonoids in solanum lycopersicum using FTIR spectroscopy. Food Anal Methods 15(11):2931–2939. https://doi.org/10.1007/s12161-022-02344-w
Kalpana VN, Devi Rajeswari V (2018) A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorgan Chem Appl. https://doi.org/10.1155/2018/3569758
Karam ST, Abdulrahman AF (2022) Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract. Photonics. https://doi.org/10.3390/photonics9080594
Kumar S, Jain S, Nehra M, Dilbaghi N, Marrazza G, Kim K-H (2020) Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications. Coordination Chem Rev 420:213407. https://doi.org/10.1016/j.ccr.2020.213407
Kumar Jangir L, Kumari Y, Kumar A, Kumar M, Awasthi K (2017) Investigation of luminescence and structural properties of ZnO nanoparticles, synthesized with different precursors. Mater Chem Front 1(7):1413–1421. https://doi.org/10.1039/c7qm00058h
Kumari H, Sonia S, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R (2023) A Review on photocatalysis used for wastewater treatment: dye degradation in water, air, and soil pollution. Springer International Publishing, Berlin. https://doi.org/10.1007/s11270-023-06359-9
Maceda A, Soto-Hernández M, Terrazas T (2022) Chemical-anatomical characterization of stems of Asparagaceae species with potential use for lignocellulosic fibers and biofuels. Forests. https://doi.org/10.3390/f13111853
Montemayor Palos CM, Mariño-Gámez AE, Acosta-González G-E, Hernández MB, García-Villarreal S, Falcon Franco L, García-Ortiz L, Aguilar-Martínez JA (2023) Large-scale production of ZnO nanoparticles by high energy ball milling. Phys Condensed Matter 656:414776. https://doi.org/10.1016/j.physb.2023.414776
Nasrollahzadeh M, Mahmoudi-GomYek S, Motahharifar N, GhaforiGorab M (2019a) Recent developments in the plant-mediated green synthesis of ag-based nanoparticles for environmental and catalytic applications. Chem Record 19(12):2436–2479. https://doi.org/10.1002/tcr.201800202
Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z (2019b) Green nanotechnology. In: Asrollahzadeh MN, Sajadi SM, Sajjadi M, Issaabadi Z, Atarod T (eds) An introduction to green nanotechnology. Elsevier, Amsterdam
Nemzer B, Al-Taher F, Abshiru N (2020) Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L) genotypes. Food Chem 320:126621. https://doi.org/10.1016/j.foodchem.2020.126621
Article CAS PubMed Google Scholar
Nie M, Xia Y-F, Wang Z-B, Yu F-D, Zhang Y, Wu J, Wu B (2015) Effects of precursor particle size on the performance of LiNi05Co0.2Mn0.3O2 cathode material. Ceramics Int 41:15185–15192. https://doi.org/10.1016/j.ceramint.2015.08.093
Osuntokun J, Onwudiwe DC, Ebenso EE (2019) Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L var italica and the photocatalytic activity. Green Chem Lett Rev 12(4):444–457. https://doi.org/10.1080/17518253.2019.1687761
Peralta-Videa JR, Huang Y, Parsons JG, Zhao L, Lopez-Moreno L, Hernandez-Viezcas JA, Gardea-Torresdey JL (2016) Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng 1(1):1–29. https://doi.org/10.1007/s41204-016-0004-5
Pramanik S, Mondal S, Mandal AC, Mukherjee S, Das S, Ghosh T, Nath R, Ghosh M, Kuiri PK (2020) Role of oxygen vacancies on the green photoluminescence of microwave-assisted grown ZnO nanorods. J Alloys Compounds 849:156684. https://doi.org/10.1016/j.jallcom.2020.156684
Comments (0)