Banerjee R, Kamrava M. Brachytherapy in the treatment of cervical cancer: a review. Int J Women’s Health. 2014;6:555–64. https://doi.org/10.2147/IJWH.S46247.
Mendez LC, Morton GC. High dose-rate brachytherapy in the treatment of prostate cancer. Translational Androl Urol. 2018;7(3):357–70. https://doi.org/10.21037/tau.2017.12.08.
American Cancer Society. Second Cancer Related to Treatment. (2020) (https://www.cancer.org/treatment/survivorship-during-and-after-treatment/long-term-health-concerns/second-cancers-in-adults/treatment-risks.html). [accessed 15 April, 2022].
Lee B, Ahn SH, Kim H, Son J, Sung J, Han Y, Huh SJ, Kim JS, Kim DW, Yoon M. Secondary cancer-incidence risk estimates for external radiotherapy and high-dose-rate brachytherapy in cervical cancer: phantom study. J Appl Clin Med Phys. 2016;17(5):124–32. https://doi.org/10.1120/jacmp.v17i5.6087.
Das IJ, Cheng CW, Watts RJ, Ahnesjo A, GibbonsJ, Li XA, TG-106 of the Therapy Physics Committee of the AAPM, Rosen II, Jessie Y, David S, Xin A, Stephen F. (2008). Accelerator beam data commissioning equipment and procedures: report of the. Medical Physics, 35 (9):4186–215.
Starkschall G, Steadham RE Jr, Popple RA, Ahman S &. (2000). Beam-commissioning methodology for a three-dimensional convolution/superposition photon dose algorithm. Journal of Applied Clinical Medical Physics,1(1):8–27.
Jessie Y, David S, Xin A, Stephen F. (2003). Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity modulated radiation therapy treatments. Journal of Applied Clinical Medical Physics, 14(2):4139.
Farhood B, Ghorbani M. Dose Calculation Accuracy of Radiotherapy Treatment Planning Systems in Out-of-Field Regions. J Biomed Phys Eng. 2019;9(2):133–136.
Fonseca GP, Johansen JG, Smith RL, Beaulieu L, Beddar S, Kertzscher G, Verhaegen F, Tanderup K. (2020). In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol, 28;16:1–11. https://doi.org/10.1016/j.phro.2020.09.002
Paganetti H. Assessment of the risk for developing a second malignancy from scattered and secondary radiation in radiation therapy. Health Phys. 2012;103:652–61. https://doi.org/10.1097/HP.0b013e318261113d.
Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF, Hall P, Langmark F, Pukkala E, Kaijser M, Andersson M, Fossa SD, Joensuu H, Boice JD, Kleinerman RA, Travis LB. Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst. 2007;99:1634–43.
Ohno T, et al. Long-term survival and risk of second cancers after Brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2007;69:740–5.
Mazzone FA et.al. Long-term incidence of secondary bladder and rectal cancer in patients treated with brachytherapy for localized prostate cancer: a large-scale population-based analysis. Br J Urol. 2019;24(6):1006–13.
International Commission on Radiological Protection. (2005). Prevention of High Dose rate brachytherapy accidents. ICRP Publication 97 Ann ICRP, 35(2).
Liao Y, Dandekar V, Chu JC, Turian J, Bernard D, Kiel K. Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy. Med Dosim. 2016;41(1):28–33. Epub 2015 Jul 30. PMID: 26235549.
Lee YC, Hsieh CC, Li CY, Chuang JP, Lee JC. Secondary cancers after radiation therapy for primary prostate or rectal cancer. J Gen Surg. 2016;40(4):895–905.
Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56:83–8.
Taylor ML, Kron T. Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy. J Med Phys. 2011;36(2):59–71. https://doi.org/10.4103/0971-6203.79686.
Duggan DM. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources. Appl Radiat Isot. 2004;61(6):1443–50. https://doi.org/10.1016/j.apradiso.2004.05.070.
Andreo P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiat Oncol, 27;13(1):121. https://doi.org/10.1186/s13014-018-1065-3
Brualla L, Rodriguez M, Lallena AM. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol. 2017;193(4):243–59. https://doi.org/10.1007/s00066-016-1075-8.
Werner ChJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, Dixon DA et al. (2018). MCNP Version 6.2 Release Notes, Los Alamos National Laboratory LA-UR-18-20808.
Kron T. Thermoluminiscence dosimetry and its applications in medicine. Part 2: history and applications. Australas Phys Eng Sci. 1995;18(1):1–25.
Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K. K Kodama Solid cancer incidence in atomic bomb survivors: 1958–1998. J Radiat Res, 168 (1) (2007), pp. 1–64, https://doi.org/10.1667/RR0763.1 PMID: 17722996.
ICRP Recommendations of the International Commission on Radiological Protection. (Users Edition) ICRP publication 103 (users Edition). Ann ICRP. 2007;37:2–4.
Doudoo CO, Gyekye PK, Emi-Reynolds G, Adu S, Kpeglo DO, Nii Adu Tagoe S, Agyiri K. Dose and secondary cancer-risk estimation of patients undergoing high dose rate intracavitary gynaecological brachytherapy. J Med Imaging Radiation Sci, 54(2):335–42. https://doi.org/10.1016/j.jmir.2023.03.031
D’Avino V, Caruso M, Arrichiello C, Ametrano G, La Verde G. Thermoluminescent dosimeters (TLDs-100) calibration for dose verification in photon and proton radiation therapy. Il Nuovo Cimento C. 2020;43(6):1–11.
Kry SF, Price M, Followill D, Mourtada F, Salehpour M. (2007). The use of LiF (TLD-100) as an out-of-field dosimeter. J Appl Med Phys, 8(4).
Majdaeen M et al. (2021).‘Skin dose measurement and estimating the Dosimetric Effect of Applicator Misplacement in Gynecological Brachytherapy: a patient and Phantom Study’. Pp. 917–29.
Chen R, Leung P, L. Non-linear dose dependence and dose-rate dependence of optically stimulated luminescence and thermoluminescence. Radiat Meas. 2001;33(5):475–81.
Montano-Garcia C, Gamboa-deBuen I. Measurements of the optical density and the thermoluminescent response of LiF:mg,Ti exposed to high doses of 60Co gamma rays. Radiat Prot Dosimetry. 2006;119(1–4):230–2. https://doi.org/10.1093/rpd/nci653.
Report No. 158 - AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. (2017).
Majdaeen M, Refahi S, Banaei A, Ghadimi M, Ardekani MA, Goushbolagh NA, Zamani H. A comparison of skin dose estimation between thermoluminescent dosimeter and treatment planning system in prostatic cancer: a brachytherapy technique. J Clin Transl Res. 2021;25(1):77–83. PMID: 34027203; PMCID: PMC8132188.
Marvi M, Gholami S, Barough M, Hosseini M, Nabavi M, Jaberi R, Mohammadkarim A. Evaluation of exit skin dose for intra-cavitary brachytherapy treatments by the BEBIG 60Co machine using thermoluminescent dosimeters. I Radiother Pract. 2021;20(1):49–54. https://doi.org/10.1017/S1460396919001018.
Lucas PA, Aubineau-Lanièce I, Lourenço V, Vermesse D, Cutarella D. Using LiF: Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source. Med Phys. 2014;41(1):011711. https://doi.org/10.1118/1.4851636. PMID: 24387503.
Chandola RM, Tiwari S, Kowar MK, Choudhary V. Monte Carlo and experimental dosimetric study of the mHDR-v2 brachytherapy source. J Cancer Res Ther. 2010 Oct-Dec;6(4):421–6. https://doi.org/10.4103/0973-1482.77068.
Hunt JG, da Silva FC, Mauricio CL, dos Santos DS. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources. Radiat Prot Dosimetry. 2004;108(1):85–9. https://doi.org/10.1093/rpd/nch002.
Reddy BR, Chamberland MJ, Ravikumar M, Varatharaj C. Measurements and Monte Carlo calculation of radial dose and anisotropy functions of BEBIG 60Co high-dose-rate brachytherapy source in a bounded water phantom. J Contemp Brachytherapy. 2019;11(6):563. https://doi.org/10.5114/jcb.2019.91224.
Bassi S, Berrigan L, Zuchora A, Fahy L, Moore M. End-to-end dosimetric audit: a novel procedure developed for Irish HDR brachytherapy centres. Phys Med. 2020;80:221–9. https://doi.org/10.1016/j.ejmp.2020.10.005.
Marcié S, Gerard JP, Dejean C, Feuillade J, Gautier M, Montagné L, Fuentes C, Hannoun-Levi JM. The inverse square law: a basic principle in brachytherapy. Cancer Radiother. 2022;26(8):1075–7. https://doi.org/10.1016/j.canrad.2022.04.002.
Tedgren CA, Hedman A, Grindborg J, Carlsson GA. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachythera py (< 1 MeV). Int J Med Phys Res Pract. 2011;38(10). https://doi.org/10.1118/1.3633892.
Lee JH, Chang LT, Shiau AC, Chen CW, Liao YJ, Li WJ, Lee MS, Hsu SM. A novel simple phantom for verifying the dose of radiation therapy. Biomedical Res Int. 2015;2015(934387). https://doi.org/10.1155/2015/934387.
Junell S, Dewerd L. SU-GG-T-241: determination of the Energy correction factor for TLD-100 in 6 and 10MV Photon beams relative to cobalt 60. Med Phys. 2008;35(6):2780. https://doi.org/10.1118/1.2961993.
Scarboro SB, Followill DS, Howell RM, Kry SF. Variations in photon energy spectra of a 6 MV Beam and their impact on TLD response. Med Phys. 2011;38(5):2619–28. https://doi.org/10.1118/1.3575419.
Abdel-Wahab M, Zubizarreta E, Polo A, Meghzifene A. (2017). Improving quality and access to radiation therapy - an IAEA perspective Semin Radiat Oncol, 27 (2) (2017), pp. 109–117, https://doi.org/10.1016/j.semradonc.2016.11.001
Comments (0)