Estes C, Chan HLY, Chien RN, et al. Modelling NAFLD disease burden in four Asian regions-2019-2030. Aliment Pharmacol Ther. 2020;51(8):801-11. https://pubmed.ncbi.nlm.nih.gov/32133676 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154715 https://doi.org/10.1111/apt.15673
Verrastro O, Panunzi S, Castagneto-Gissey L, et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. Lancet. 2023;401(10390):1786-97. https://pubmed.ncbi.nlm.nih.gov/37088093 https://doi.org/10.1016/S0140-6736(23)00634-7
Cerreto M, Santopaolo F, Gasbarrini A, Pompili M, Ponziani FR. Bariatric surgery and liver disease: general considerations and role of the gut-liver axis. Nutrients. 2021;13(8):2649. https://pubmed.ncbi.nlm.nih.gov/34444807 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399840 https://doi.org/10.3390/nu13082649
Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology. 2018;67(1):145-58. https://pubmed.ncbi.nlm.nih.gov/28802074 https://doi.org/10.1002/hep.29465
Leonetti S, Herzog RI, Caprio S, Santoro N, Tricò D. Glutamate-serine-glycine index: a novel potential biomarker in pediatric non-alcoholic fatty liver disease. Children (Basel). 2020;7(12):270. https://pubmed.ncbi.nlm.nih.gov/33291552 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761842 https://doi.org/10.3390/children7120270
Ibrahim SH, Kohli R, Gores GJ. Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 2011;53(2):131-40. https://pubmed.ncbi.nlm.nih.gov/21629127 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145329 https://doi.org/10.1097/MPG.0b013e31822578db
Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20(7):1746-55. https://pubmed.ncbi.nlm.nih.gov/24587652 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930973 https://doi.org/10.3748/wjg.v20.i7.1746
Obara N, Fukushima K, Ueno Y, et al. Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J Hepatol. 2010;53(2):326-34. https://pubmed.ncbi.nlm.nih.gov/20462650 https://doi.org/10.1016/j.jhep.2010.02.029
Enooku K, Nakagawa H, Fujiwara N, et al. Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma. Sci Rep. 2019;9(1):10663. https://pubmed.ncbi.nlm.nih.gov/31337855 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650415 https://doi.org/10.1038/s41598-019-47216-2
Mojtahed A, Kelly CJ, Herlihy AH, et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases. Abdom Radiol (NY). 2019;44(1):72-84. https://pubmed.ncbi.nlm.nih.gov/30032383 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348264 https://doi.org/10.1007/s00261-018-1701-2
Bachtiar V, Kelly MD, Wilman HR, et al. Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver. PLoS One. 2019;14(4):e0214921. https://pubmed.ncbi.nlm.nih.gov/30970039 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457552 https://doi.org/10.1371/journal.pone.0214921
Yin M, Talwalkar JA, Glaser KJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5(10):1207-13.e2. https://pubmed.ncbi.nlm.nih.gov/17916548 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276978 https://doi.org/10.1016/j.cgh.2007.06.012
Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology. 2011;259(3):749-56. https://pubmed.ncbi.nlm.nih.gov/21460032 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099044 https://doi.org/10.1148/radiol.11101942
Mattar SG, Velcu LM, Rabinovitz M, et al. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann Surg. 2005;242(4):610-20. https://pubmed.ncbi.nlm.nih.gov/16192822 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1402345 https://doi.org/10.1097/01.sla.0000179652.07502.3f
Weiner, R.A., Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):274-9. https://pubmed.ncbi.nlm.nih.gov/20460923 https://doi.org/10.1159/000282102
Lee Y, Doumouras AG, Yu J, et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2019;17(6):1040-60.e11. https://pubmed.ncbi.nlm.nih.gov/30326299 https://doi.org/10.1016/j.cgh.2018.10.017
Eslam M, Sarin SK, Wong VW, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020;14(6):889-919. https://pubmed.ncbi.nlm.nih.gov/33006093 https://doi.org/10.1007/s12072-020-10094-2
Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne). 2021;8:615978. https://pubmed.ncbi.nlm.nih.gov/33937277 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079659 https://doi.org/10.3389/fmed.2021.615978
Peng KY, Watt MJ, Rensen S, et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res. 2018;59(10):1977-86. https://pubmed.ncbi.nlm.nih.gov/30042157 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168306 https://doi.org/10.1194/jlr.M085613
Rutkowsky JM, Knotts TA, Ono-Moore KD, et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab. 2014;306(12):E1378-87. https://pubmed.ncbi.nlm.nih.gov/24760988 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059985 https://doi.org/10.1152/ajpendo.00656.2013
Sampey BP, Freemerman AJ, Zhang J, et al. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS One. 2012;7(6):e38812. https://pubmed.ncbi.nlm.nih.gov/22701716 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373493 https://doi.org/10.1371/journal.pone.0038812
Adams SH, Hoppel CL, Lok KH, et al. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr. 2009;139(6):1073-81. https://pubmed.ncbi.nlm.nih.gov/19369366 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714383 https://doi.org/10.3945/jn.108.103754
Wajner M, Amaral AU. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Biosci Rep. 2015;36(1):e00281. https://pubmed.ncbi.nlm.nih.gov/26589966 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718505 https://doi.org/10.1042/BSR20150240
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 2014;53:124-44. https://pubmed.ncbi.nlm.nih.gov/24362249 https://doi.org/10.1016/j.plipres.2013.12.001
DiNicolantonio JJ, O'Keefe JH. Good fats versus bad fats: a comparison of fatty acids in the promotion of insulin resistance, inflammation, and obesity. Mo Med. 2017;114(4):303-7. https://pubmed.ncbi.nlm.nih.gov/30228616 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140086
Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13(9):509-20. https://pubmed.ncbi.nlm.nih.gov/28621339 https://doi.org/10.1038/nrendo.2017.56
Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52(3):913-924. https://pubmed.ncbi.nlm.nih.gov/20648476 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070295 https://doi.org/10.1002/hep.23784
Tan HC, Shumbayawonda E, Beyer C, et al. Multiparametric magnetic resonance imaging and magnetic resonance elastography to evaluate the early effects of bariatric surgery on nonalcoholic fatty liver disease. Int J Biomed Imaging. 2023;2023:4228321. https://pubmed.ncbi.nlm.nih.gov/37521027 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372298 https://doi.org/10.1155/2023/4228321
Caussy C, Hsu C, Singh S, et al. Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD. Aliment Pharmacol Ther. 2019;49(2):183-93. https://pubmed.ncbi.nlm.nih.gov/30506692 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319963 https://doi.org/10.1111/apt.15035
Masoodi M, Gastaldelli A, Hyötyläinen T, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18(12):835-56. https://pubmed.ncbi.nlm.nih.gov/34508238 https://doi.org/10.1038/s41575-021-00502-9
Nimer N, Choucair I, Wang Z, et al. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metabolism. 2021;116:154457. https://pubmed.ncbi.nlm.nih.gov/33275980 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856026 https://doi.org/10.1016/j.metabol.2020.154457
Kalhan SC, Guo L, Edmison J, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404-13. https://pubmed.ncbi.nlm.nih.gov/20423748 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950914 https://doi.org/10.1016/j.metabol.2010.03.006
Mardinoglu A, Bjornson E, Zhang C, et al. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol Syst Biol. 2017;13(3):916. https://doi.org/10.15252/msb.20167422.
Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143-53. https://pubmed.ncbi.nlm.nih.gov/22995213 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549305 https://doi.org/10.1016/j.bbagen.2012.09.008
Han D, Hanawa N, Saberi B, Kaplowitz N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol. 2006;291(1):G1-7. https://pubmed.ncbi.nlm.nih.gov/16500922 https://doi.org/10.1152/ajpgi.00001.2006
Yuan L, Kaplowitz N. Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med. 2009;30(1-2):29-41. https://pubmed.ncbi.nlm.nih.gov/18786561 https://doi.org/10.1016/j.mam.2008.08.003
Vairetti M, Ferrigno A, Bertone R, Richelmi P, Bertè F, Freitas I. Apoptosis vs. necrosis: glutathione-mediated cell death during rewarming of rat hepatocytes. Biochim Biophys Acta. 2005;1740(3):367-74. https://pubmed.ncbi.nlm.nih.gov/15949704 https://doi.org/10.1016/j.bbadis.2004.11.022
Bayram B, Rimbach G, Frank J, Esatbeyoglu T. Rapid method for glutathione quantitation using high-performance liquid chromatography with coulometric electrochemical detection. J Agric Food Chem. 2014;62(2):402-8. https://pubmed.ncbi.nlm.nih.gov/24328299 https://doi.org/10.1021/jf403857h
Hasegawa T, Iino C, Endo T, et al. Changed amino acids in NAFLD and liver fibrosis: a large cross-sectional study without influence of insulin resistance. Nutrients. 2020;12(5):1450. https://pubmed.ncbi.nlm.nih.gov/32429590 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284573 https://doi.org/10.3390/nu12051450
Tan HC, Hsu JW, Tai ES, et al. De novo glycine synthesis is reduced in adults with morbid obesity and increases following bariatric surgery. Front Endocrinol (Lausanne). 2022;13:900343. https://pubmed.ncbi.nlm.nih.gov/35757406 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219591 https://doi.org/10.3389/fendo.2022.900343
Luzi L, Castellino P, DeFronzo RA. Insulin and hyperaminoacidemia regulate by a different mechanism leucine turnover and oxidation in obesity. Am J Physiol. 1996;270(2 Pt 1):E273-81. https://pubmed.ncbi.nlm.nih.gov/8779949 https://doi.org/10.1152/ajpendo.1996.270.2.E273
Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91(12):4753-61. https://pubmed.ncbi.nlm.nih.gov/16968800 https://doi.org/10.1210/jc.2006-0587
Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance [published correction appears in Cell Metab. 2009;9(4):311-26. https://pubmed.ncbi.nlm.nih.gov/19356713 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640280 https://doi.org/10.1016/j.cmet.2009.02.002
Lu J, Xie G, Jia W, Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013;7(1):53-9. PMID: 23385611 https://doi.org/10.1007/s11684-013-0255-5
Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723-36. PMID: 25287287 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424797 https://doi.org/10.1038/nrendo.2014.171
Tan HC, Hsu JW, Kovalik JP, et al. Branched-chain amino acid oxidation is elevated in adults with morbid obesity and decreases significantly after sleeve gastrectomy. J Nutr. 2020;150(12):3180-9. PMID: 33097955 https://doi.org/10.1093/jn/nxaa298
Yao J, Kovalik JP, Lai OF, et al. Comprehensive assessment of the effects of sleeve gastrectomy on glucose, lipid, and amino acid metabolism in Asian individuals with morbid obesity. Obes Surg. 2019;29(1):149-58. PMID: 30191503 https://doi.org/10.1007/s11695-018-3487-2
Tan HC, Khoo CM, Tan MZ, et al. The effects of sleeve gastrectomy and gastric bypass on branched-chain amino acid metabolism 1 year after bariatric surgery. Obes Surg. 2016;26(8):1830-5. https://pubmed.ncbi.nlm.nih.gov/26729279 https://doi.org/10.1007/s11695-015-2023-x
Morgan MY, Marshall AW, Milsom JP, Sherlock S. Plasma amino-acid patterns in liver disease. Gut. 1982;23(5):362-70. https://pubmed.ncbi.nlm.nih.gov/7076013 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1419690 https://doi.org/10.1136/gut.23.5.362
Azuma Y, Maekawa M, Kuwabara Y, Nakajima T, Taniguchi K, Kanno T. Determination of branched-chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness. Clin Chem. 1989;35(7):1399-1403. https://pubmed.ncbi.nlm.nih.gov/2758584
Kawanaka M, Nishino K, Oka T, et al. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat Med. 2015;7:29-35. https://pubmed.ncbi.nlm.nih.gov/26082668 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461125 https://doi.org/10.2147/HMER.S79100
Dennis A, Kelly MD, Fernandes C, et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis. Front Endocrinol (Lausanne). 2021;11:575843. https://pubmed.ncbi.nlm.nih.gov/33584535 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877451 https://doi.org/10.3389/fendo.2020.575843
Comments (0)