Garrity, G. (2007). Bergey’s manual of systematic bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria. Springer Science & Business Media. https://doi.org/10.1007/0-387-28022-7.
Kroos, L. (2007). The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annual Review of Genetics, 41, 13–39. https://doi.org/10.1146/annurev.genet.41.110306.130400
Article CAS PubMed Google Scholar
Browning, D. F., Whitworth, D. E., & Hodgson, D. A. (2003). Light-induced carotenogenesis in Myxococcus xanthus: Functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Molecular Microbiology, 48, 237–251. https://doi.org/10.1046/j.1365-2958.2003.03431.x
Article CAS PubMed Google Scholar
Singer, M., & Kaiser, D. (1995). Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes & Development, 9(13), 1633–1644. https://doi.org/10.1101/gad.9.13.1633
Padmanabhan, S., Monera-Girona, A. J., Pérez-Castaño, R., et al. (2021). Light-triggered carotenogenesis in Myxococcus xanthus: New paradigms in photosensory signaling, transduction and gene regulation. Microorganisms, 9(5), 1067. https://doi.org/10.3390/microorganisms9051067
Article CAS PubMed PubMed Central Google Scholar
Woitowich, N. C., Halavaty, A. S., Waltz, P., et al. (2018). Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome. IUCrJ, 5, 619–634. https://doi.org/10.1107/S2052252518010631.
Article CAS PubMed PubMed Central Google Scholar
Qualls, G. T., & Stephens, K. (1979). White D (1978) Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca. Science, 201, 444–445. https://doi.org/10.1126/science.96528
Sanchez, J. C., Carrillo, M., Pandey, S., et al. (2019). High-resolution crystal structures of a myxobacterial phytochrome at cryo and room temperatures. Structural Dynamics. https://doi.org/10.1063/1.5120527
Article PubMed PubMed Central Google Scholar
Fixen, K. R., Baker, A. W., Stojkovic, E. A., et al. (2014). Apo-bacteriophytochromes modulate bacterialphotosynthesis in response to low light. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1322410111
Giraud, E., Fardoux, J., Fourrier, N., et al. (2002). Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature, 417, 202–205. https://doi.org/10.1038/417202a
Article CAS PubMed Google Scholar
Giraud, E., Zappa, S., Vuillet, L., et al. (2005). A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. Journal of Biological Chemistry, 280, 32389–32397. https://doi.org/10.1074/jbc.M506890200
Article CAS PubMed Google Scholar
Davis, S. J., Vener, A. V., & Vierstra, R. D. (1999). Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science (1979), 286, 2517–2520. https://doi.org/10.1126/science.286.5449.2517
Lamparter, T., Xue, P., Elkurdi, A., et al. (2021). Phytochromes in Agrobacterium fabrum. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.642801
Article PubMed PubMed Central Google Scholar
Malla, T. N., Hernandez, C., Muniyappan, S., et al. (2024). Photoreception and signaling in bacterial phytochrome revealed by single-particle cryo-EM. Science Advances, 10, eadq0653. https://doi.org/10.1126/sciadv.adq0653
Article PubMed PubMed Central Google Scholar
Schneider, K., Perrino, S., Oelhafen, K., et al. (2009). Rhythmic conidiation in constant light in Vivid mutants of Neurospora crassa. Genetics, 181, 917–931.
Article CAS PubMed PubMed Central Google Scholar
Castro-Longoria, E., Brody, S., & Bartnicki-García, S. (2007). Kinetics of circadian band development in Neurospora crassa. Fungal Genetics and Biology, 44, 672–681. https://doi.org/10.1016/j.fgb.2007.01.007
Article CAS PubMed Google Scholar
Graniczkowska, K. B., & Cassone, V. M. (2021). Circadian organization of the gut commensal bacterium Klebsiella aerogenes. In C. H. Johnson & M. J. Rust (Eds.), Circadian rhythms in bacteria and microbiomes (pp. 351–364). Springer International Publishing.
Graniczkowska, K. B., Paulose, J. K., & Cassone, V. M. (2023). Circadian regulation of metabolic, cell division, and cation transport promoters in the gastrointestinal bacterium Klebsiella aerogenes. Frontiers in Microbiology, 14, 1181756. https://doi.org/10.3389/fmicb.2023.1181756. eCollection 2023.
Article PubMed PubMed Central Google Scholar
Paulose, J. K., Cassone, C. V., Graniczkowska, K. B., & Cassone, V. M. (2019). Entrainment of the circadian clock of the enteric bacterium Klebsiella aerogenes by temperature cycles. iScience, 19, 1202–1213. https://doi.org/10.1016/j.isci.2019.09.007
Article CAS PubMed PubMed Central Google Scholar
Paulose, J. K., Wright, J. M., Patel, A. G., & Cassone, V. M. (2016). Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS ONE, 11, e0146643. https://doi.org/10.1371/journal.pone.0146643
Article CAS PubMed PubMed Central Google Scholar
Kondo, T., & Ishiura, M. (1999). The circadian clocks of plants and cyanobacteria. Trends in Plant Science, 4, 171–177. https://doi.org/10.1016/S1360-1385(99)01410-7.
Article CAS PubMed Google Scholar
Cohen, S. E., & Golden, S. S. (2015). Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews, 79, 373–385. https://doi.org/10.1128/mmbr.00036-15
Article CAS PubMed PubMed Central Google Scholar
Ma, P., Mori, T., Zhao, C., et al. (2016). Evolution of KaiC-dependent timekeepers: A proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris. PLoS Genetics, 12, e1005922. https://doi.org/10.1371/journal.pgen.1005922.
Article CAS PubMed PubMed Central Google Scholar
Schmelling, N. M., Lehmann, R., Chaudhury, P., et al. (2017). Minimal tool set for a prokaryotic circadian clock. BMC Evolutionary Biology, 17, 169. https://doi.org/10.1186/s12862-017-0999-7
Article CAS PubMed PubMed Central Google Scholar
Loza-Correa, M., Gomez-Valero, L., & Buchrieser, C. (2010). Circadian clock proteins in prokaryotes: hidden rhythms? Frontiers in Microbiology, 1, 130. https://doi.org/10.3389/fmicb.2010.00130. eCollection 2010.
Article CAS PubMed PubMed Central Google Scholar
Dvornyk, V., Vinogradova, O., & Nevo, E. (2003). Origin and evolution of circadian clock genes in prokaryotes. Proceedings of the National Academy of Sciences, 100, 2495–2500. https://doi.org/10.1073/pnas.0130099100
Loza-Correa, M., Sahr, T., Rolando, M., et al. (2014). The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments. Environmental Microbiology, 16, 359–381. https://doi.org/10.1111/1462-2920.12223
Article CAS PubMed Google Scholar
Terrettaz, C., Cabete, B., Geiser, J., et al. (2023). KaiC-like proteins contribute to stress resistance and biofilm formation in environmental Pseudomonas species. Environmental Microbiology, 25, 894–913. https://doi.org/10.1111/1462-2920.16330
Comments (0)