Photomorphogenesis of Myxococcus macrosporus: new insights for light-regulation of cell development

Garrity, G. (2007). Bergey’s manual of systematic bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria. Springer Science & Business Media. https://doi.org/10.1007/0-387-28022-7.

Book  Google Scholar 

Kroos, L. (2007). The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annual Review of Genetics, 41, 13–39. https://doi.org/10.1146/annurev.genet.41.110306.130400

Article  CAS  PubMed  Google Scholar 

Browning, D. F., Whitworth, D. E., & Hodgson, D. A. (2003). Light-induced carotenogenesis in Myxococcus xanthus: Functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Molecular Microbiology, 48, 237–251. https://doi.org/10.1046/j.1365-2958.2003.03431.x

Article  CAS  PubMed  Google Scholar 

Singer, M., & Kaiser, D. (1995). Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes & Development, 9(13), 1633–1644. https://doi.org/10.1101/gad.9.13.1633

Article  CAS  Google Scholar 

Padmanabhan, S., Monera-Girona, A. J., Pérez-Castaño, R., et al. (2021). Light-triggered carotenogenesis in Myxococcus xanthus: New paradigms in photosensory signaling, transduction and gene regulation. Microorganisms, 9(5), 1067. https://doi.org/10.3390/microorganisms9051067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woitowich, N. C., Halavaty, A. S., Waltz, P., et al. (2018). Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome. IUCrJ, 5, 619–634. https://doi.org/10.1107/S2052252518010631.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qualls, G. T., & Stephens, K. (1979). White D (1978) Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca. Science, 201, 444–445. https://doi.org/10.1126/science.96528

Article  Google Scholar 

Sanchez, J. C., Carrillo, M., Pandey, S., et al. (2019). High-resolution crystal structures of a myxobacterial phytochrome at cryo and room temperatures. Structural Dynamics. https://doi.org/10.1063/1.5120527

Article  PubMed  PubMed Central  Google Scholar 

Fixen, K. R., Baker, A. W., Stojkovic, E. A., et al. (2014). Apo-bacteriophytochromes modulate bacterialphotosynthesis in response to low light. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1322410111

Article  PubMed  Google Scholar 

Giraud, E., Fardoux, J., Fourrier, N., et al. (2002). Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature, 417, 202–205. https://doi.org/10.1038/417202a

Article  CAS  PubMed  Google Scholar 

Giraud, E., Zappa, S., Vuillet, L., et al. (2005). A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. Journal of Biological Chemistry, 280, 32389–32397. https://doi.org/10.1074/jbc.M506890200

Article  CAS  PubMed  Google Scholar 

Davis, S. J., Vener, A. V., & Vierstra, R. D. (1999). Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science (1979), 286, 2517–2520. https://doi.org/10.1126/science.286.5449.2517

Article  CAS  Google Scholar 

Lamparter, T., Xue, P., Elkurdi, A., et al. (2021). Phytochromes in Agrobacterium fabrum. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.642801

Article  PubMed  PubMed Central  Google Scholar 

Malla, T. N., Hernandez, C., Muniyappan, S., et al. (2024). Photoreception and signaling in bacterial phytochrome revealed by single-particle cryo-EM. Science Advances, 10, eadq0653. https://doi.org/10.1126/sciadv.adq0653

Article  PubMed  PubMed Central  Google Scholar 

Schneider, K., Perrino, S., Oelhafen, K., et al. (2009). Rhythmic conidiation in constant light in Vivid mutants of Neurospora crassa. Genetics, 181, 917–931.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro-Longoria, E., Brody, S., & Bartnicki-García, S. (2007). Kinetics of circadian band development in Neurospora crassa. Fungal Genetics and Biology, 44, 672–681. https://doi.org/10.1016/j.fgb.2007.01.007

Article  CAS  PubMed  Google Scholar 

Graniczkowska, K. B., & Cassone, V. M. (2021). Circadian organization of the gut commensal bacterium Klebsiella aerogenes. In C. H. Johnson & M. J. Rust (Eds.), Circadian rhythms in bacteria and microbiomes (pp. 351–364). Springer International Publishing.

Chapter  Google Scholar 

Graniczkowska, K. B., Paulose, J. K., & Cassone, V. M. (2023). Circadian regulation of metabolic, cell division, and cation transport promoters in the gastrointestinal bacterium Klebsiella aerogenes. Frontiers in Microbiology, 14, 1181756. https://doi.org/10.3389/fmicb.2023.1181756. eCollection 2023.

Article  PubMed  PubMed Central  Google Scholar 

Paulose, J. K., Cassone, C. V., Graniczkowska, K. B., & Cassone, V. M. (2019). Entrainment of the circadian clock of the enteric bacterium Klebsiella aerogenes by temperature cycles. iScience, 19, 1202–1213. https://doi.org/10.1016/j.isci.2019.09.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paulose, J. K., Wright, J. M., Patel, A. G., & Cassone, V. M. (2016). Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS ONE, 11, e0146643. https://doi.org/10.1371/journal.pone.0146643

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondo, T., & Ishiura, M. (1999). The circadian clocks of plants and cyanobacteria. Trends in Plant Science, 4, 171–177. https://doi.org/10.1016/S1360-1385(99)01410-7.

Article  CAS  PubMed  Google Scholar 

Cohen, S. E., & Golden, S. S. (2015). Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews, 79, 373–385. https://doi.org/10.1128/mmbr.00036-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, P., Mori, T., Zhao, C., et al. (2016). Evolution of KaiC-dependent timekeepers: A proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris. PLoS Genetics, 12, e1005922. https://doi.org/10.1371/journal.pgen.1005922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmelling, N. M., Lehmann, R., Chaudhury, P., et al. (2017). Minimal tool set for a prokaryotic circadian clock. BMC Evolutionary Biology, 17, 169. https://doi.org/10.1186/s12862-017-0999-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loza-Correa, M., Gomez-Valero, L., & Buchrieser, C. (2010). Circadian clock proteins in prokaryotes: hidden rhythms? Frontiers in Microbiology, 1, 130. https://doi.org/10.3389/fmicb.2010.00130. eCollection 2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dvornyk, V., Vinogradova, O., & Nevo, E. (2003). Origin and evolution of circadian clock genes in prokaryotes. Proceedings of the National Academy of Sciences, 100, 2495–2500. https://doi.org/10.1073/pnas.0130099100

Article  CAS  Google Scholar 

Loza-Correa, M., Sahr, T., Rolando, M., et al. (2014). The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments. Environmental Microbiology, 16, 359–381. https://doi.org/10.1111/1462-2920.12223

Article  CAS  PubMed  Google Scholar 

Terrettaz, C., Cabete, B., Geiser, J., et al. (2023). KaiC-like proteins contribute to stress resistance and biofilm formation in environmental Pseudomonas species. Environmental Microbiology, 25, 894–913. https://doi.org/10.1111/1462-2920.16330

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif