Blatchley, E. R., Brenner, D. J., Claus, H., Cowan, T. E., Linden, K. G., Liu, Y., Mao, T., Park, S. J., Piper, P. J., Simons, R. M., & Sliney, D. H. (2023). Far UV-C radiation: An emerging tool for pandemic control. Critical Reviews in Environment Science and Technology, 53, 733–753. https://doi.org/10.1080/10643389.2022.2084315
Truong, C. S., Muthukutty, P., Jang, H. K., Kim, Y. H., Lee, D. H., & Yoo, S. Y. (2023). Filter-Free, harmless, and single-wavelength far UV-C germicidal light for reducing airborne pathogenic viral infection. Viruses. https://doi.org/10.3390/V15071463
Article PubMed PubMed Central Google Scholar
Goto, N., Bazar, G., Kovacs, Z., Kunisada, M., Morita, H., Kizaki, S., Sugiyama, H., Tsenkova, R., & Nishigori, C. (2015). Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics. Scientific Reports, 51(5), 1–13. https://doi.org/10.1038/srep11808
(2024) Mercury: Council and Parliament strike a deal to completely phase out mercury in the EU. Counc. EU Press release.
Cadet, J., Grand, A., & Douki, T. (2015). Solar UV radiation-induced DNA bipyrimidine photoproducts: Formation and mechanistic insights. Topics in Current Chemistry, 356, 249–276. https://doi.org/10.1007/128_2014_553
Article PubMed CAS Google Scholar
Castro-Alférez, M., Polo-López, M. I., & Fernández-Ibáñez, P. (2016). Intracellular mechanisms of solar water disinfection. Scientific Reports, 61(6), 1–10. https://doi.org/10.1038/srep38145
Giannakis, S., Gupta, A., Pulgarin, C., & Imlay, J. (2022). Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo)Fenton process and singlet oxygen HHS Public Access. Water Research, 221, 118740. https://doi.org/10.1016/j.watres.2022.118740
Article PubMed PubMed Central CAS Google Scholar
María, C., Andrés, C., Manuel Pérez De La Lastra, J., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2022). Impact of reactive species on amino acids-biological relevance in proteins and induced pathologies. International Journal of Molecular Science, 2022, 14049. https://doi.org/10.3390/ijms232214049
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2014/360438
Article PubMed PubMed Central Google Scholar
Cadet, J., & Davies, K. J. A. (2017). Oxidative DNA damage & repair: An introduction. Free Radical Biology & Medicine, 107, 2–12. https://doi.org/10.1016/j.freeradbiomed.2017.03.030
Sutherland, J. C., & Griffin, K. P. (1981). Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiation Research, 86, 399–409. https://doi.org/10.2307/3575456
Article PubMed CAS Google Scholar
Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: A direct photochemical mechanism? Organic & Biomolecular Chemistry, 8, 1706–1711. https://doi.org/10.1039/B924712B
Kundu, L. M., Linne, U., Marahiel, M., & Carell, T. (2004). RNA is more UV resistant than DNA: The formation of UV-induced DNA lesions is strongly sequence and conformation dependent. Chemistry, 10, 5697–5705. https://doi.org/10.1002/CHEM.200305731
Article PubMed CAS Google Scholar
Kladwang, W., Hum, J., & Das, R. (2012). Ultraviolet shadowing of RNA can cause significant chemical damage in seconds. Scientific Reports, 21(2), 1–7. https://doi.org/10.1038/srep00517
Chen, J., Loeb, S., & Kim, J. H. (2017). LED revolution: Fundamentals and prospects for UV disinfection applications. Environmental Science: Water Research & Technology, 3, 188–202. https://doi.org/10.1039/C6EW00241B
Schöbel, H., Diem, G., Kiechl, J., Chistè, D., Bertacchi, G., Mayr, A., Wilflingseder, D., Lass-Flörl, C., & Posch, W. (2023). Antimicrobial efficacy and inactivation kinetics of a novel LED-based UV-irradiation technology. Journal of Hospital Infection, 135, 11–17. https://doi.org/10.1016/j.jhin.2022.12.023
Article PubMed CAS Google Scholar
Lu, Y. H., Wang, R. X., Liu, H. L., & Lai, A. C. K. (2024). Evaluating the performance of UV disinfection across the 222–365 nm spectrum against aerosolized bacteria and viruses. Environmental Science and Technology, 58, 6868–6877. https://doi.org/10.1021/ACS.EST.3C08675/SUPPL_FILE/ES3C08675_SI_001.PDF
Article PubMed CAS Google Scholar
Raeiszadeh, M., & Adeli, B. (2020). A critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations. ACS Photonics, 7, 2941–2951. https://doi.org/10.1021/ACSPHOTONICS.0C01245/ASSET/IMAGES/LARGE/PH0C01245_0004.JPEG
Article PubMed CAS Google Scholar
Heilingloh, C. S., Aufderhorst, U. W., Schipper, L., Dittmer, U., Witzke, O., Yang, D., Zheng, X., Sutter, K., Trilling, M., Alt, M., Steinmann, E., & Krawczyk, A. (2020). Susceptibility of SARS-CoV-2 to UV irradiation. American Journal of Infection Control, 48, 1273–1275. https://doi.org/10.1016/J.AJIC.2020.07.031
Article PubMed PubMed Central Google Scholar
Biasin, M., Bianco, A., Pareschi, G., Cavalleri, A., Cavatorta, C., Fenizia, C., Galli, P., Lessio, L., Lualdi, M., Tombetti, E., Ambrosi, A., Redaelli, E. M. A., Saulle, I., Trabattoni, D., Zanutta, A., & Clerici, M. (2021). UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Scientific Reports, 111(11), 1–7. https://doi.org/10.1038/s41598-021-85425-w
Cho, E. R., & Kang, D. H. (2023). Combination system of pulsed ohmic heating and 365-nm UVA light-emitting diodes to enhance inactivation of foodborne pathogens in phosphate-buffered saline, milk, and orange juice. Innovative Food Science and Emerging Technologies, 83, 103250. https://doi.org/10.1016/J.IFSET.2022.103250
Zhao, Y., & Dong, J. (2022). Effect of inactivating RNA viruses by coupled UVC and UVA LEDs evaluated by a viral surrogate commonly used as a genetic vector. Biomedical Optics Express, 13, 4429. https://doi.org/10.1364/BOE.468445
Article PubMed PubMed Central CAS Google Scholar
Beck, S. E., Rodriguez, R. A., Hawkins, M. A., Hargy, T. M., Larason, T. C., & Linden, K. G. (2016). Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Applied and Environment Microbiology, 82, 1468–1474. https://doi.org/10.1128/AEM.02773-15
Irbe, I., Filipova, I., Skute, M., Zajakina, A., Spunde, K., & Juhna, T. (2021). Characterization of novel biopolymer blend mycocel from plant cellulose and fungal fibers. Polymers, 13, 1086. https://doi.org/10.3390/POLYM13071086
Article PubMed PubMed Central CAS Google Scholar
Vibornijs, V., Zubkins, M., Strods, E., Rudevica, Z., Korotkaja, K., Ogurcovs, A., Kundzins, K., Purans, J., & Zajakina, A. (2024). Analysis of antibacterial and antiviral properties of ZnO and Cu coatings deposited by magnetron sputtering: Evaluation of cell viability and ROS production. Coatings, 14, 14. https://doi.org/10.3390/COATINGS14010014/S1
Sandri, A., Tessari, A., Giannetti, D., Cetti, A., Lleo, M. M., & Boschi, F. (2023). UV-A radiation: Safe human exposure and antibacterial activity. International Journal of Molecular Sciences. https://doi.org/10.3390/IJMS24098331/S1
Article PubMed PubMed Central Google Scholar
Skudra, A., Revalde, G., Zajakina, A., Mezule, L., Spunde, K., Juhna, T., & Rancane, K. (2022). UV inactivation of Semliki Forest virus and E. coli bacteria by alternative light sources. Journal of Photochemistry and Photobiology, 10, 100120. https://doi.org/10.1016/J.JPAP.2022.100120
Article PubMed PubMed Central CAS Google Scholar
Zubkins, M., Vibornijs, V., Strods, E., Aulika, I., Zajakina, A., Sarakovskis, A., Kundzins, K., Korotkaja, K., Rudevica, Z., Letko, E., & Purans, J. (2023). A stability study of transparent conducting WO3/Cu/WO3 coatings with antimicrobial properties. Surfaces and Interfaces, 41, 103259. https://doi.org/10.1016/J.SURFIN.2023.103259
Korotkaja, K., & Zajakina, A. (2023). Recombinant virus quantification using single-cell droplet digital PCR: A method for infectious titer quantification. Viruses. https://doi.org/10.3390/V15051060
Comments (0)