Abanoz HS, Kunduhoglu B (2018) Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Korean J Food Sci Anim Resour 38(5):1064–1079. https://doi.org/10.5851/kosfa.2018.e40
Article PubMed PubMed Central Google Scholar
Almeida-Santos AC, Novais C, Peixe L, Freitas AR (2021) Enterococcus spp. as a producer and target of bacteriocins: a double-edged sword in the antimicrobial resistance crisis context. Antibiotics 10:1215. https://doi.org/10.3390/antibiotics10101215
Article CAS PubMed PubMed Central Google Scholar
Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London, England) 399(10325):629–55. https://doi.org/10.1016/S0140-6736(21)02724-0
Azargohar R, Dalai AK (2005) Production of activated carbon from Luscar char: experimental and modeling studies. Microporous Mesoporous Mater 85(3):219–225. https://doi.org/10.1016/j.micromeso.2005.06.018
Baishya R, Bhattacharya A, Mukherjee M, Lahiri D, Banerjee S (2016) Establishment of a simple reproducible model for antibiotic sensitivity pattern study of biofilm forming Staphylococcus aureus. Materials Today: Proceedings 3(10):3461–3466. https://doi.org/10.1016/j.matpr.2016.10.028
Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharmaceutical Analysis 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Calo-Mata P, Arlindo S, Boehme K, De Miguel T, Pascoal A, Barros-Velazquez J (2008) Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technol 1(1):43–63. https://doi.org/10.1007/s11947-007-0021-2
Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17(4):840–862. https://doi.org/10.1128/CMR.17.4.840-862.2004
Article CAS PubMed PubMed Central Google Scholar
Darbandi A, Asadi A, Ari MM, Ohadi E, Talebi M, Zadeh MH, Emamie AD, Ghanavati R, Kakanj M (2022) Bacteriocins: properties and potential use as antimicrobials. J Clin Laboratory Analysis 36(1):24093. https://doi.org/10.1002/jcla.24093
De Man JC, Rogosa M, Elisabeth Sharpe M (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–35. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
De Vos WM, Kuipers OP, Van Der Meer JR, Siezen RJ (1995) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria. Mol Microbiol 17(3):427–437. https://doi.org/10.1111/j.1365-2958.1995.mmi_17030427.x
Diop MB, Alvarez VB, Guiro AT, Thonart P (2016) Efficiency of neutralized antibacterial culture supernatant from bacteriocinogenic lactic acid bacteria supplemented with salt in control of microorganisms present in senegalese artisanally handled fish by immersion preservative technology during Guedj seafood processing at 10°C and 30°C. J Food: Microbiol, Safety &Hygiene 01(01). https://doi.org/10.4172/2476-2059.1000102
do Carmo de Freire Bastos M, Lívio Varella Coelho M, Cabral Da Silva Santos O (2015) Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 161(4):683–700. https://doi.org/10.1099/mic.0.082289-0
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Salimian M (2020) Evaluation of antibacterial activity of enterocin A-colicin E1 fusion peptide. Iran J Basic Med Sci 23(11)1471
FDA (U.S. Food & Drug Administration)/Federal Register. 1988. Nisin preparation: affirmation of GRAS status as a direct human food ingredient. 21 CFR Part 184, Fed Reg53:11247-51
Fraga Cotelo M, Perelmuter Schein K, Giacaman Salvo SS, Zunino Abirad PM, Carro Techera SB (2013) Antimicrobial properties of lactic acid bacteria isolated from Uruguayan artisan cheese. Food Sci Technol (Campinas) 33(4):801–804. https://doi.org/10.1590/S0101-20612013000400029
Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31(3):293–310. https://doi.org/10.1111/j.1574-6976.2007.00064.x
Article CAS PubMed Google Scholar
Ghosh S, Mondol S, Lahiri D, Nag M, Sarkar T, Pati S, Pandit S, Alarfaj AA, Mohd Amin MF, Edinur HA, Ahmad Mohd Zain MR, Ray RR (2023) Biogenic silver nanoparticles (AgNPs) from Tinosporacordifolia leaves: an effective antibiofilm agent against Staphylococcus aureus ATCC 23235. Front Chem 11;1118454. https://doi.org/10.3389/fchem.2023.1118454
Gillor O, Ghazaryan L (2007) Recent advances in bacteriocin application as antimicrobials. Recent Pat Anti-Infect Drug Discovery 2(2):115–122. https://doi.org/10.2174/157489107780832613
Goh HF, Philip K (2015) Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE 10(10):e0140434. https://doi.org/10.1371/journal.pone.0140434
Article CAS PubMed PubMed Central Google Scholar
Hassan MU, Nayab H, Rehman TU, Williamson MP, Haq KU, Shafi N, Shafique F (2020) Characterisation of bacteriocins produced by Lactobacillus spp. isolated from the traditional Pakistani yoghurt and their antimicrobial activity against common foodborne pathogens. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/8281623
Hayat S, Sabri AN, McHugh TD (2017) Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria. J Gen Appl Microbiol 63(6):325–338. https://doi.org/10.2323/jgam.2017.01.004
Article CAS PubMed Google Scholar
Hu C-B, Malaphan W, Zendo T, Nakayama J, Sonomoto K (2010) Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76(13):4542–4545. https://doi.org/10.1128/AEM.02264-09
Article CAS PubMed PubMed Central Google Scholar
Jack R, Bierbaum G, Heidrich C, Sahl H-G (1995) The genetics of lantibiotic biosynthesis. BioEssays 17(9):793–802. https://doi.org/10.1002/bies.950170909
Article CAS PubMed Google Scholar
Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci 87(6):2264–2268. https://doi.org/10.1073/pnas.87.6.2264
Article CAS PubMed PubMed Central Google Scholar
Kim SW, Kang SI, Shin DH, Oh SY, Lee CW, Yang Y, Son YK, Yang H-S, Lee B-H, An H-J, Jeong IS, Bang WY (2020) Potential of cell-free supernatant from Lactobacillus plantarum NIBR97, including novel bacteriocins, as a natural alternative to chemical disinfectants. Pharmaceuticals (Basel, Switzerland) 13(10):266. https://doi.org/10.3390/ph13100266
Article CAS PubMed Google Scholar
Kingston JJ, Radhika M, Roshini PT, Raksha MA, Murali HS, Batra HV (2010) Molecular characterization of lactic acid bacteria recovered from natural fermentation of beet root and carrot Kanji. Indian J Microbiol 50(3):292–298. https://doi.org/10.1007/s12088-010-0022-0
Article CAS PubMed PubMed Central Google Scholar
Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70(3):337–349. https://doi.org/10.1016/0300-9084(88)90206-4
Article CAS PubMed Google Scholar
Lahiri D, Nag M, Dutta B, Dey S, Mukherjee D, Joshi SJ, Ray RR (2021a) Antibiofilm and anti-quorum sensing activities of eugenol and linalool from Ocimum tenuiflorum against Pseudomonas aeruginosa biofilm. J Appl Microbiol 131(6):2821–2837. https://doi.org/10.1111/jam.15171
Article CAS PubMed Google Scholar
Lahiri D, Nag M, Dutta B, Sarkar T, Ray RR (2021b) Artificial neural network and response surface methodology-mediated optimization of bacteriocin production by Rhizobium leguminosarum. Iranian J Sci Technol, Trans: Sci 45(5):1509–1517. https://doi.org/10.1007/s40995-021-01157-6
Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424. https://doi.org/10.1634/theoncologist.8-5-411
Article CAS PubMed Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275
Article CAS PubMed Google Scholar
Mahdi LH, Abdul-Hur GN, Auda IG (2020) Evidence of anti-K pneumoniae biofilm activity of novel Entrococcus faecalis enterocin GLHM. Microbial Pathogenesis 147:104366. https://doi.org/10.1016/j.micpath.2020.104366
Comments (0)