Ventral tegmental area deep brain stimulation reverses ethanol-induced dopamine increase in the rat nucleus accumbens

Tucker JA, Chandler SD, Witkiewitz K. Epidemiology of Recovery from Alcohol Use Disorder. Alcohol Res Curr Rev. 2020;40:02.

Article  Google Scholar 

Vigo D, Jones L, Thornicroft G, Atun R. Burden of Mental, neurological, Substance Use disorders and Self-Harm in North America: a comparative epidemiology of Canada, Mexico, and the United States. Can J Psychiatry. 2020;65:87–98.

Google Scholar 

Arterberry BJ, Boyd CJ, West BT, Schepis TS, McCabe SE. DSM-5 substance use disorders among college-age young adults in the United States: prevalence, remission and treatment. J Am Coll Health. 2020;68:650–7.

Article  Google Scholar 

Ignaszewski MJ. The epidemiology of drug abuse. J Clin Pharmacol. 2021;61:S10–7.

Article  Google Scholar 

Blomqvist O, Engel JA, Nissbrandt H, Söderpalm B. The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine. Eur J Pharmacol. 1993;249:207–13.

Article  Google Scholar 

Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther. 2004;103:121–46.

Article  Google Scholar 

Westerink BHC, Enrico P, Feimann J, Vries JBD. The pharmacology of mesocortical dopamine neurons: a dual-probe Microdialysis Study in the Ventral Tegmental Area and Prefrontal Cortex of the rat brain. J Pharmacol Exp Ther. 1998;285:143–54.

Google Scholar 

Hamid AA, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19:117–26.

Article  Google Scholar 

Yuen J, et al. Cocaine-Induced changes in Tonic dopamine concentrations measured using multiple-cyclic Square Wave Voltammetry in vivo. Front Pharmacol. 2021;12:705254.

Article  Google Scholar 

Yuen J et al. Oxycodone-induced dopaminergic and respiratory effects are modulated by deep brain stimulation. Front Pharmacol 14, (2023).

Oh Y, et al. Monitoring in vivo changes in Tonic Extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal Chem. 2016;88:10962–70.

Article  Google Scholar 

Di Chiara G, et al. Stimulation of dopamine transmission in the dorsal caudate nucleus by pargyline as demonstrated by dopamine and acetylcholine microdialysis and Fos immunohistochemistry. Neuroscience. 1993;55:451–6.

Article  Google Scholar 

Blaha CD, Coury A, Phillips AG. Does monoamine oxidase inhibition by pargyline increase extracellular dopamine concentrations in the striatum? Neuroscience. 1996;75:543–50.

Article  Google Scholar 

Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of Brain Microdialysis. Curr Protoc Neurosci. 2009;47:711–7128.

Google Scholar 

Oh Y, et al. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens Bioelectron. 2018;121:174–82.

Article  Google Scholar 

Rusheen AE, et al. Evaluation of electrochemical methods for tonic dopamine detection in vivo. TrAC Trends Anal Chem. 2020;132:116049.

Article  Google Scholar 

Watson CJ, Venton BJ, Kennedy RT. In vivo measurements of neurotransmitters by microdialysis sampling. Anal Chem. 2006;78:1391–9.

Article  Google Scholar 

Bungay PM, Newton-Vinson P, Isele W, Garris PA, Justice JB. Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem. 2003;86:932–46.

Article  Google Scholar 

Borland LM, Shi G, Yang H, Michael AC. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods. 2005;146:149–58.

Article  Google Scholar 

Mitala CM, et al. Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study. J Neurosci Methods. 2008;174:177–85.

Article  Google Scholar 

Atcherley CW, Wood KM, Parent KL, Hashemi P, Heien ML. The coaction of tonic and phasic dopamine dynamics. Chem Commun. 2015;51:2235–8.

Article  Google Scholar 

Yuen J, et al. Cocaine increases stimulation-evoked serotonin efflux in the nucleus accumbens. J Neurophysiol. 2022;127:714–24.

Article  Google Scholar 

Yuen J, et al. High frequency deep brain stimulation can mitigate the acute effects of cocaine administration on tonic dopamine levels in the rat nucleus accumbens. Front Neurosci. 2023;17:1061578.

Article  Google Scholar 

Chang S-Y, et al. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation: Laboratory investigation. J Neurosurg. 2013;119:1556–65.

Article  Google Scholar 

Vreeland RF, et al. Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in vivo. Anal Chem. 2015;87:2600–7.

Article  Google Scholar 

Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard Cover Edition. Elsevier; 2006.

Lee KH, et al. WINCS Harmoni: closed-loop dynamic neurochemical control of therapeutic interventions. Sci Rep. 2017;7:46675.

Article  Google Scholar 

Robinson DL, Venton BJ, Heien MLAV, Wightman RM. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem. 2003;49:1763–73.

Article  Google Scholar 

Keithley RB, et al. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal Chem. 2011;83:3563–71.

Article  Google Scholar 

Puthongkham P, Venton BJ. Recent advances in fast-scan cyclic voltammetry. Analyst. 2020;145:1087–102.

Article  Google Scholar 

Goyal A, et al. Software for near-real-time voltammetric tracking of tonic neurotransmitter levels in vivo. Front Neurosci. 2022;16:1–13.

Article  Google Scholar 

Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM. Disparity between Tonic and phasic ethanol-Induced dopamine increases in the Nucleus accumbens of rats. Alcohol Clin Exp Res. 2009;33:1187–96.

Article  Google Scholar 

Budygin EA, et al. Effect of Acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J Pharmacol Exp Ther. 2001;297:27–34.

Google Scholar 

Blanchard BA, Steindorf S, Wang S, Glick SD. Sex differences in ethanol-induced dopamine release in Nucleus Accumbens and in ethanol consumption in rats. Alcohol Clin Exp Res. 1993;17:968–73.

Article  Google Scholar 

Budygin EA, Phillips PEM, Wightman RM, Jones SR. Terminal effects of ethanol on dopamine dynamics in rat nucleus accumbens: an in vitro voltammetric study. Synapse. 2001;42:77–9.

Article  Google Scholar 

Yorgason JT, Ferris MJ, Steffensen SC, Jones SR. Frequency-dependent effects of ethanol on dopamine release in the Nucleus Accumbens. Alcohol Clin Exp Res. 2014;38:438–47.

Article  Google Scholar 

Xiao C, et al. Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral Tegmental Area. Neuropsychopharmacology. 2009;34:307–18.

Article  Google Scholar 

Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral Tegmental Area: Interaction with intrinsic Ion channels and neurotransmitter inputs. In: Reilly MT, Lovinger DM, editors. International Review of Neurobiology. Volume 91. Academic; 2010. pp. 235–88.

Dahchour A, Ward RJ. Changes in brain dopamine extracellular concentration after Ethanol Administration; rat Microdialysis studies. Alcohol Alcohol. 2022;57:165–75.

Article  Google Scholar 

Wozniak KM, Pert A, Mele A, Linnoila M. Focal application of alcohols elevates extracellular dopamine in rat brain: a microdialysis study. Brain Res. 1991;540:31–40.

Article  Google Scholar 

Bregman T, et al. Antidepressant-like effects of Medial Forebrain Bundle Deep Brain Stimulation in rats are not Associated with Accumbens dopamine release. Brain Stimulat. 2015;8:708–13.

Article  Google Scholar 

de Jong JW, et al. Reducing ventral Tegmental dopamine D2 receptor expression selectively boosts incentive motivation. Neuropsychopharmacology. 2015;40:2085–95.

Article  Google Scholar 

Ashkan K, Rogers P, Bergman H, Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol. 2017;13:548–54.

Article  Google Scholar 

Chiken S, Nambu A. Disrupting neuronal transmission: mechanism of DBS? Front Syst Neurosci 8, (2014).

Chiken S, Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist. 2016;22:313–22.

Article  Google Scholar 

McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115:1239–48.

Article  Google Scholar 

Benazzouz A, Hallett M. Mechanism of action of deep brain stimulation. Neurology. 2000;55:S13–6.

Google Scholar 

Liu LD, et al. Frequency-dependent effects of electrical stimulation in the Globus pallidus of dystonia patients. J Neurophysiol. 2012;108:5–17.

Article  Google Scholar 

Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport. 2004;15:1137.

Article  Google Scholar 

Lozano AM, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15:148–60.

Article  Google Scholar 

Gilron R, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat Biotechnol. 2021;39:1078–85.

Comments (0)

No login
gif