Characterization of the phagocytic ability of white blood cells separated using a single curvature spiral microfluidic device

Fung YC. Biomechanics; Springer: New York, NY (2013).

Kim B, Seo IH, Seo GM, Kim WJ, Shin EC, Choi S. Blood divider for simple, surface tension-based isolation of peripheral blood mononuclear cells. Adv Mater Technol. 2022;7:2100691.

Article  Google Scholar 

Urbansky A, Ohlsson P, Lenshof A, Garofalo F, Scheding S, Laurell T. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci Rep. 2017;7:17161.

Article  Google Scholar 

Civelekoglu O, Ozkaya-Ahmadov OT, Arifuzzman AKM, Mutcali SI, Sarioglu AF. Immunomagnetic leukocyte differential in whole blood on an electronic microdevice. Lab Chip. 2022;22:2331–42.

Article  Google Scholar 

Rajawat A, Tripathi S. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: beyond flow cytometry. Biomed Eng Lett. 2020;10:241–57.

Article  Google Scholar 

Kim B, Kim KH, Chang Y, Shin S, Shin EC, Choi S. One-step microfluidic purification of white blood cells from whole blood for immunophenotyping. Anal Chem. 2019;91:13230–6.

Article  Google Scholar 

Ji HM, Samper V, Chen Y, Heng CK, Lim TM. Yobas. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices. 2008;10:251–7.

Article  Google Scholar 

Yamada M, Seki M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip. 2005;5:1233–9.

Article  Google Scholar 

Matsuura K, Takata K. Blood cell separation using polypropylene-based microfluidic devices based on deterministic lateral displacement. Micromachines. 2023;14:238.

Article  Google Scholar 

Zheng S, Tai YC, Kasdan H. A micro device for separation of erythrocytes and leukocytes in human blood. IEEE Engineering in Medicine and Biology 27th Annual Conference (2006) 1024–1027.

Mane NS, Puri DB, Mane S, Hemadri V, Banerjee A, Tripathi S. Separation of motile human sperms in a T-shaped sealed microchannel. Biomed Eng Lett. 2022;12:331–42.

Article  Google Scholar 

Nam J, Yoon J, Kim J, Jang WS, Lim CS. Continuous erythrocyte removal and leukocyte separation from whole blood based on viscoelastic cell focusing and the margination phenomenon. J Chromatogr A. 2019;1595:230–9.

Article  Google Scholar 

Mehran A, Rostami P, Saidi MS, Firoozabadi B, Kashaninejad N. High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with U-shaped cross-section. Biosensors. 2021;11:1–22.

Article  Google Scholar 

Wu Z, Chen Y, Wang M, Chung AJ. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip. 2016;16:532–42.

Article  Google Scholar 

DiCarlo D, Irimia D, Tompkins RG, Toner M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci. 2007;104:18892–97.

Article  Google Scholar 

Kumar A, Titus ASCLS, Dinh MTP, Mukhamedshin A, Mohan C, Gifford SC, Shevkoplyas SS. Red blood cell rosetting enables size-based separation of specific lymphocyte subsets from blood in a microfluidic device. Lab Chip. 2023;23:1804–15.

Article  Google Scholar 

Shin HS, Park J, Lee SY, Yun HG, Kim B, Kim J, Han S, Cho D, Doh J, Choi S. Integrative magneto-microfluidic separation of immune cells facilitates clinical functional assays. Small, 19 (2013).

Mane S, Hemadri V, Tripathi S. Separation of white blood cells in a wavy type microfluidic device using blood diluted in a hypertonic saline solution. BioChip J. 2022;16:291–304.

Article  Google Scholar 

Zhang J, Yuan D, Sluyter R, Yan S, Zhao Q, Xia H, Tan SH, Nguyen NT, Li W. High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE Trans Biomed Circuits Syst. 2017;11:1422–30.

Article  Google Scholar 

Chiu PL, Chang CH, Lin YL, Tsou PH, Li BR. Rapid and safe isolation of human peripheral blood B and T lymphocytes through spiral microfluidic channels. Sci Rep. 2019;9:8145.

Article  Google Scholar 

Wu L, Guan G, Hou HW, Bhagat AAS, Han J. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal Chem. 2012;84:9324–31.

Article  Google Scholar 

Jeon H, Jundi B, Choi K, Ryu H, Levy BD, Lim G, Han J. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics. Lab Chip. 2020;20:3612–24.

Article  Google Scholar 

Cheng X, Irimiaa D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins RG, Rodriguezb W, Toner M. A microfluidic device for practical label-free CD4 + T cell counting of HIV-infected subjects. Lab Chip. 2007;7:170–8.

Article  Google Scholar 

Langer S, Radhakrishnan N, Pradhan S, Das J, Saraf A, Kotwal J. Clinical and laboratory profiles of 17 cases of chronic granulomatous disease in north India. Indian J Hematol Blood Transfus. 2021;37:45–51.

Article  Google Scholar 

Choi HS, Kim JW, Cha YN, Kim C. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoass Immunochem. 2006;27:31–44.

Article  Google Scholar 

Rook GA, Steele J, Umar S, Dockrell HM. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J Immunol Methods. 1985;82:161–7.

Article  Google Scholar 

Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41:139–57.

Google Scholar 

Eckert D, Rapp F, Tsedeke AT, Molendowska J, Lehn R, Langhans M, Fournier C, Rödel F, Hehlgans S. ROS and radiation source-dependent modulation of leukocyte adhesion to primary microvascular endothelial cells. Cells. 2021;11:72.

Article  Google Scholar 

Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020;467:1–12.

Article  Google Scholar 

George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, Zheng Y, Joiner CH, Kalfa TA. Erythrocyte NADPH oxidase activity modulated by rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121:2099–107.

Article  Google Scholar 

Viallat A, Abkarian M. Dynamics of blood cell suspensions in microflows. Boca Raton: CRC; 2019.

Book  Google Scholar 

Caro CG, Pedley TJ, Schroter RC, Seed WA. The mechanics of the circulation. 2nd ed. Cambridge: Cambridge University Press; 2011.

Book  Google Scholar 

Mane S, Hemadri V, Tripathi S. Investigating WBC margination in different microfluidic geometries: influence of RBC shape and size. J Micromech Microeng. 2023;33:065002.

Article  Google Scholar 

Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M. Particle segregation and dynamics in confined flows. Phys Rev Lett. 2009;102:094503.

Article  Google Scholar 

Zhou J, Papautsky I. Fundamentals of inertial focusing in microchannels. Lab Chip. 2013;13:1121–32.

Article  Google Scholar 

Tripathi S, Kumar YVBV, Agrawal A, Prabhakar A. Joshi. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects Sci. Rep. 2019;6:26749.

Google Scholar 

Segre G, Silberberg A. Radial particle displacements in poiseuille flow of suspensions. Nature. 1961;189:209–10.

Article  Google Scholar 

Levitzky MG. Using the pathophysiology of obstructive sleep apnea to teach cardiopulmonary integration. Adv Physiol Educ. 2008;32:196–202.

Article  Google Scholar 

White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets. 2005;16:121–31.

Article  Google Scholar 

Nivedita N, Papautsky I. Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics. 2013;7:1–14.

Article  Google Scholar 

Bhattad S. Primary immune deficiencies made simple. New Delhi, India: CBS; 2021.

Google Scholar 

Comments (0)

No login
gif