Fung YC. Biomechanics; Springer: New York, NY (2013).
Kim B, Seo IH, Seo GM, Kim WJ, Shin EC, Choi S. Blood divider for simple, surface tension-based isolation of peripheral blood mononuclear cells. Adv Mater Technol. 2022;7:2100691.
Urbansky A, Ohlsson P, Lenshof A, Garofalo F, Scheding S, Laurell T. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci Rep. 2017;7:17161.
Civelekoglu O, Ozkaya-Ahmadov OT, Arifuzzman AKM, Mutcali SI, Sarioglu AF. Immunomagnetic leukocyte differential in whole blood on an electronic microdevice. Lab Chip. 2022;22:2331–42.
Rajawat A, Tripathi S. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: beyond flow cytometry. Biomed Eng Lett. 2020;10:241–57.
Kim B, Kim KH, Chang Y, Shin S, Shin EC, Choi S. One-step microfluidic purification of white blood cells from whole blood for immunophenotyping. Anal Chem. 2019;91:13230–6.
Ji HM, Samper V, Chen Y, Heng CK, Lim TM. Yobas. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices. 2008;10:251–7.
Yamada M, Seki M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip. 2005;5:1233–9.
Matsuura K, Takata K. Blood cell separation using polypropylene-based microfluidic devices based on deterministic lateral displacement. Micromachines. 2023;14:238.
Zheng S, Tai YC, Kasdan H. A micro device for separation of erythrocytes and leukocytes in human blood. IEEE Engineering in Medicine and Biology 27th Annual Conference (2006) 1024–1027.
Mane NS, Puri DB, Mane S, Hemadri V, Banerjee A, Tripathi S. Separation of motile human sperms in a T-shaped sealed microchannel. Biomed Eng Lett. 2022;12:331–42.
Nam J, Yoon J, Kim J, Jang WS, Lim CS. Continuous erythrocyte removal and leukocyte separation from whole blood based on viscoelastic cell focusing and the margination phenomenon. J Chromatogr A. 2019;1595:230–9.
Mehran A, Rostami P, Saidi MS, Firoozabadi B, Kashaninejad N. High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with U-shaped cross-section. Biosensors. 2021;11:1–22.
Wu Z, Chen Y, Wang M, Chung AJ. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip. 2016;16:532–42.
DiCarlo D, Irimia D, Tompkins RG, Toner M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci. 2007;104:18892–97.
Kumar A, Titus ASCLS, Dinh MTP, Mukhamedshin A, Mohan C, Gifford SC, Shevkoplyas SS. Red blood cell rosetting enables size-based separation of specific lymphocyte subsets from blood in a microfluidic device. Lab Chip. 2023;23:1804–15.
Shin HS, Park J, Lee SY, Yun HG, Kim B, Kim J, Han S, Cho D, Doh J, Choi S. Integrative magneto-microfluidic separation of immune cells facilitates clinical functional assays. Small, 19 (2013).
Mane S, Hemadri V, Tripathi S. Separation of white blood cells in a wavy type microfluidic device using blood diluted in a hypertonic saline solution. BioChip J. 2022;16:291–304.
Zhang J, Yuan D, Sluyter R, Yan S, Zhao Q, Xia H, Tan SH, Nguyen NT, Li W. High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE Trans Biomed Circuits Syst. 2017;11:1422–30.
Chiu PL, Chang CH, Lin YL, Tsou PH, Li BR. Rapid and safe isolation of human peripheral blood B and T lymphocytes through spiral microfluidic channels. Sci Rep. 2019;9:8145.
Wu L, Guan G, Hou HW, Bhagat AAS, Han J. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal Chem. 2012;84:9324–31.
Jeon H, Jundi B, Choi K, Ryu H, Levy BD, Lim G, Han J. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics. Lab Chip. 2020;20:3612–24.
Cheng X, Irimiaa D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins RG, Rodriguezb W, Toner M. A microfluidic device for practical label-free CD4 + T cell counting of HIV-infected subjects. Lab Chip. 2007;7:170–8.
Langer S, Radhakrishnan N, Pradhan S, Das J, Saraf A, Kotwal J. Clinical and laboratory profiles of 17 cases of chronic granulomatous disease in north India. Indian J Hematol Blood Transfus. 2021;37:45–51.
Choi HS, Kim JW, Cha YN, Kim C. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoass Immunochem. 2006;27:31–44.
Rook GA, Steele J, Umar S, Dockrell HM. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J Immunol Methods. 1985;82:161–7.
Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41:139–57.
Eckert D, Rapp F, Tsedeke AT, Molendowska J, Lehn R, Langhans M, Fournier C, Rödel F, Hehlgans S. ROS and radiation source-dependent modulation of leukocyte adhesion to primary microvascular endothelial cells. Cells. 2021;11:72.
Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020;467:1–12.
George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, Zheng Y, Joiner CH, Kalfa TA. Erythrocyte NADPH oxidase activity modulated by rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121:2099–107.
Viallat A, Abkarian M. Dynamics of blood cell suspensions in microflows. Boca Raton: CRC; 2019.
Caro CG, Pedley TJ, Schroter RC, Seed WA. The mechanics of the circulation. 2nd ed. Cambridge: Cambridge University Press; 2011.
Mane S, Hemadri V, Tripathi S. Investigating WBC margination in different microfluidic geometries: influence of RBC shape and size. J Micromech Microeng. 2023;33:065002.
Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M. Particle segregation and dynamics in confined flows. Phys Rev Lett. 2009;102:094503.
Zhou J, Papautsky I. Fundamentals of inertial focusing in microchannels. Lab Chip. 2013;13:1121–32.
Tripathi S, Kumar YVBV, Agrawal A, Prabhakar A. Joshi. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects Sci. Rep. 2019;6:26749.
Segre G, Silberberg A. Radial particle displacements in poiseuille flow of suspensions. Nature. 1961;189:209–10.
Levitzky MG. Using the pathophysiology of obstructive sleep apnea to teach cardiopulmonary integration. Adv Physiol Educ. 2008;32:196–202.
White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets. 2005;16:121–31.
Nivedita N, Papautsky I. Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics. 2013;7:1–14.
Bhattad S. Primary immune deficiencies made simple. New Delhi, India: CBS; 2021.
Comments (0)