Modification macrophage to foam cells in atherosclerosis disease: some factors stimulate or inhibit this process

Johnston JM, Angyal A, Bauer RC, Hamby S, Suvarna SK, Baidžajevas K, et al. Myeloid tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci Adv. 2019;5(10):eaax9183.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uchida Y. Recent advances in fluorescent angioscopy for Molecular Imaging of Human atherosclerotic coronary plaque. J Atheroscler Thromb. 2017;24(6):539–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Yao Q, Xu S, Wang H, Qu P. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux. Biochem Biophys Res Commun. 2018;495(1):382–7.

Article  CAS  PubMed  Google Scholar 

Li JZ, Cao TH, Han JC, Qu H, Jiang SQ, Xie BD, et al. Comparison of adipose– and bone marrow–derived stem cells in protecting against ox–LDL–induced inflammation in M1–macrophage–derived foam cells. Mol Med Rep. 2019;19(4):2660–70.

CAS  PubMed  PubMed Central  Google Scholar 

de Gaetano M, Alghamdi K, Marcone S, Belton O. Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation. J Inflamm (Lond). 2015;12:15.

Article  PubMed  Google Scholar 

Gupta N, Goswami R, Alharbi MO, Biswas D, Rahaman SO. TRPV4 is a regulator in P. Gingivalis lipopolysaccharide-induced exacerbation of macrophage foam cell formation. Physiol Rep. 2019;7(7):e14069.

Article  PubMed  PubMed Central  Google Scholar 

Gao LN, Zhou X, Lu YR, Li K, Gao S, Yu CQ, et al. Dan-Lou prescription inhibits foam cell formation Induced by ox-LDL via the TLR4/NF-κB and PPARγ signaling pathways. Front Physiol. 2018;9:590.

Article  PubMed  PubMed Central  Google Scholar 

Xu G, Watanabe T, Iso Y, Koba S, Sakai T, Nagashima M, et al. Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis. Circ Res. 2009;105(5):500–10.

Article  CAS  PubMed  Google Scholar 

Matsuo M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci. 2022;148(2):197–203.

Article  CAS  PubMed  Google Scholar 

Yuan F, Wei J, Cheng Y, Wang F, Gu M, Li Y, et al. SLAMF7 promotes Foam Cell formation of macrophage by suppressing NR4A1 expression during carotid atherosclerosis. Inflammation. 2024;47(2):530–42.

Article  CAS  PubMed  Google Scholar 

Guo X, Li B, Wen C, Zhang F, Xiang X, Nie L, et al. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell Mol Life Sci. 2023;80(5):137.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi X, Xie WL, Kong WW, Chen D, Qu P. Expression of the NLRP3 inflammasome in Carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2015;24(11):2455–66.

Article  PubMed  Google Scholar 

Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ. 2013;22(9):746–50.

Article  PubMed  Google Scholar 

Kagan JC, Horng T. NLRP3 inflammasome activation: CD36 serves double duty. Nat Immunol. 2013;14(8):772–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XY, Kong LX, Li J, He HX, Zhou YD. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1. Int J Mol Med. 2013;31(2):331–8.

Article  CAS  PubMed  Google Scholar 

Kim E, Ahuja A, Kim MY, Cho JY. DNA or protein methylation-dependent regulation of activator Protein-1 function. Cells. 2021;10(2).

Missiou A, Rudolf P, Stachon P, Wolf D, Varo N, Aichele P, et al. TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation. Circ Res. 2010;107(6):757–66.

Article  CAS  PubMed  Google Scholar 

Wang R, Wu W, Li W, Huang S, Li Z, Liu R, et al. Activation of NLRP3 inflammasome promotes foam cell formation in vascular smooth muscle cells and Atherogenesis Via HMGB1. J Am Heart Assoc. 2018;7(19):e008596.

Article  PubMed  PubMed Central  Google Scholar 

Rosenfeld ME, Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990;10(5):680–7.

Article  CAS  PubMed  Google Scholar 

Porto A, Palumbo R, Pieroni M, Aprigliano G, Chiesa R, Sanvito F, et al. Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. Faseb j. 2006;20(14):2565–6.

Article  CAS  PubMed  Google Scholar 

Umahara T, Uchihara T, Koyama S, Hashimoto T, Akimoto J, Haraoka J, et al. Local extension of HMGB1 in atherosclerotic lesions of human main cerebral and carotid arteries. Histol Histopathol. 2014;29(2):235–42.

CAS  PubMed  Google Scholar 

Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol. 2010;185(7):4385–92.

Article  CAS  PubMed  Google Scholar 

Zhao C, Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol. 2010;204(3):233–40.

Article  CAS  PubMed  Google Scholar 

Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15.

Article  CAS  PubMed  Google Scholar 

Zolberg Relevy N, Bechor S, Harari A, Ben-Amotz A, Kamari Y, Harats D, et al. The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity. PLoS ONE. 2015;10(1):e0115272.

Article  PubMed  PubMed Central  Google Scholar 

Napolitano M, De Pascale C, Wheeler-Jones C, Botham KM, Bravo E. Effects of lycopene on the induction of foam cell formation by modified LDL. Am J Physiol Endocrinol Metab. 2007;293(6):E1820–7.

Article  CAS  PubMed  Google Scholar 

Lo HM, Wang SW, Chen CL, Wu PH, Wu WB. Effects of all-trans retinoic acid, retinol, and β-carotene on murine macrophage activity. Food Funct. 2014;5(1):140–8.

Article  CAS  PubMed  Google Scholar 

Shi H, Severs NJ, Robenek H. Effects of calcium on the migration and recruitment of macrophages and macrophage-derived foam cells. Faseb j. 1996;10(4):491–501.

Article  CAS  PubMed  Google Scholar 

Fleckenstein-Grün G, Thimm F, Czirfuzs A, Matyas S, Frey M. Experimental vasoprotection by calcium antagonists against calcium-mediated arteriosclerotic alterations. J Cardiovasc Pharmacol. 1994;24(Suppl 2):S75–84.

Article  PubMed  Google Scholar 

Rahaman SO, Zhou G, Silverstein RL. Vav protein guanine nucleotide exchange factor regulates CD36 protein-mediated macrophage foam cell formation via calcium and dynamin-dependent processes. J Biol Chem. 2011;286(41):36011–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCarthy C, Lieggi NT, Barry D, Mooney D, de Gaetano M, James WG, et al. Macrophage PPAR gamma co-activator-1 alpha participates in repressing foam cell formation and atherosclerosis in response to conjugated linoleic acid. EMBO Mol Med. 2013;5(9):1443–57.

Article  CAS 

Comments (0)

No login
gif