STUDY OF THE EFFECT OF BIOCHAR FROM SPENT COFFEE GROUNDS ON ANAEROBIC DIGESTION OF FOOD WASTE FROM THE RESTAURANT INDUSTRY

Li, C., Bremer, P., Harder, M.K., Lee, M.SW., Parker, K., Gaugler, E.C., Mirosa, M. (2022). A systematic review of food loss and waste in China: Quantity, impacts and mediators. J. Environ. Manage., 303, 114092. https://doi.org/10.1016/j.jenvman.2021.114092

Pramanik, S.K., Suja, F.B., Zain, S.Md., Pramanik, B.K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresour. Technol. Reports, 8, 100310. https://doi.org/10.1016/j.biteb.2019.100310

Slorach, P.C., Jeswani, H.K., Cuéllar-Franca, R., Azapagic, A. (2020). Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy. Waste Management, 113. https://doi.org/10.1016/j.wasman.2020.06.012

Chhandama, M.V.L., Chetia, A.C., Satyan, K.B., Supongsenla, Ao, Ruatpuia, J.VL., Rokhum, S.L. (2022). Valorisation of food waste to sustainable energy and other value-added products: a review. Bioresour. Technol. Reports, 17, 100945. https://doi.org/10.1016/j.biteb.2022.100945

Xu, F., Li, Y., Ge, X., Yang, L., Li, Y. (2018). Anaerobic digestion of food waste – challenges and opportunities. Bioresour. Technol. 247, 1047–1058. https://doi.org/10.1016/j.biortech.2017.09.020.

Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. World Bank, Washington, DC. http://hdl.handle.net/10986/30317.

Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.M.R., Mahlia, T.M.I., (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sust. Energ. Rev. 137, 110637. https://doi.org/10.1016/j.rser.2020.110637.

Slorach, P.C., Jeswani, H.K., Cu´ellar-Franca, R., Azapagic, A., (2019). Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 236, 798–814. https://doi.org/10.1016/j.jenvman.2019.02.001.

Negri, C., Ricci, M., Zilio, M., D'Imporzano, G., Qiao, W., Dong, R., Adani, F., (2020). Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: a review. Renew. Sustain. Energy Rev. 133, 110138 https://doi.org/10.1016/j.rser.2020.110138.

Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., Li, X., (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Manag. 34, 2627–2633. https://doi.org/10.1016/j.wasman.2014.08.005.

Yong, Z., Dong, Y., Zhang, X., Tan, T., (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 78, 527–530. https://doi.org/10.1016/j.renene.2015.01.033.

Elsamadony M., Mostafa A., Fujii M., Tawfik A., Pant D., (2021). Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Res. 190, 116732. https://doi.org/10.1016/j.watres.2020.116732

Li, Y., Ni, J., Cheng, H., Zhu, A., Guo, G., Qin, Y., Li, Y.Y., (2021). Methanogenic performance and microbial community during thermophilic digestion of food waste and sewage sludge in a high-solid anaerobic membrane bioreactor. Bioresour. Technol. 342, 125938. https://doi.org/10.1016/j.biortech.2021.125938.

Masebinu, S.O., Akinlabi, E.T., Muzenda, E., Aboyade, A.O., Mbohwa, C., (2018). Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market. Waste Manag., 75, 236–250 https://doi.org/10.1016/j.wasman.2018.02.011.

Caruso, M.C., Braghieri, A., Capece, A., Napolitano, F., Romano, P., Galgano, F., Altieri, G., Genovese, F., (2019). Recent updates on the use of agro-food waste for biogas production. Appl. Sci. 9, 1217. https://doi.org/10.3390/app9061217.

Parralejo, A.I., Royano, L., Gonz´alez, J., Gonz´alez, J.F., (2019). Small scale biogas production with animal excrement and agricultural residues. Ind. Crop. Prod. 131, 307–314. https://doi.org/10.1016/j.indcrop.2019.01.059.

Chen, G., Wu, W., Xu, J., Wang, Z., (2021). An anaerobic dynamic membrane bioreactor for enhancing sludge digestion: impact of solids retention time on digestion efficacy. Bioresour. Technol. 329, 124864. https://doi.org/10.1016/j.biortech.2021.124864.

Prajapati, K.B., Singh, R., (2020). Enhancement of biogas production in bioelectrochemical digester from agricultural waste mixed with wastewater. Renew. Energy 146, 460–468. https://doi.org/10.1016/j.renene.2019.06.154.

Kumar, M., Dutta, S., You, S., Luo, G., Zhang, S., Show, P.L., Sawarkar, A.D., Singh, L., Tsang, D.C.W., (2021). A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J. Clean. Prod., 305, 127143. https://doi.org/10.1016/j.jclepro.2021.127143/

Su, C., Tao, A., Zhao, L., Wang, P., Wang, A., Huang, X., Chen, M. (2021). Roles of modified biochar in the performance, sludge characteristics, and microbial community features of anaerobic reactor for treatment food waste. Sci. Total Environ, 770, 144668. https://doi.org/10.1016/j.scitotenv.2020.144668

Yaashikaa, P.R., Senthil, K.P., Varjani, S., Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep., e00570 https://doi.org/10.1016/j.btre.2020.e00570

Andrade, T.S., Vakros, J.D. Mantzavinos, P. L., (2020). Biochar obtained by carbonization of spent coffee grounds and its application in the construction of an energy storage device. Chem. Eng. J. Adv., 4, 100061. https://doi.org/10.1016/j.ceja.2020.100061

Jiang, Q., Chen, Y., Yu, S., Zhu, R., Zhong, C., Zou, H., Gu, L., He, Q., (2020). Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study. Chem. Eng. J., 398. https://doi.org/10.1016/j.cej.2020.125643

Chiappero, M., Norouzi, O., Hu, M., Demichelis, F., Berruti, F., Di, M.F., Mašek, O., Fiore, S. (2020). Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev., 113, 110037. https://doi.org/10.1016/j.rser.2020.110037

Qiu, L., Deng, Y.F., Wang, F., Davaritouchaee, M., Yao, Y.Q. (2019). A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renew. Sustain. Energy Rev., 115, 109373.

https://doi.org/10.1016/j.rser.2019.109373

Liang, J., Luo, L., Li, D., Varjani, S., Xu, Y., Wong, J.W.C., (2021). Promoting anaerobic codigestion of sewage sludge and food waste with different types of conductive materials: performance, stability, and underlying mechanism. Bioresour. Technol. 337, 125384. https://doi.org/10.1016/j.biortech.2021.125384

Li, Q., Xu, M., Wang, G., Chen, R., Qiao, W., Wang, X., (2018). Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment. Bioresour. Technol. 249, 1009–1016. https://doi.org/10.1016/j.biortech.2017.11.002

Hossain, M.S., ul Karim, T., Onik, M.H., Kumar, D., Rahman, M. A., Yousuf, A., Uddin, M.R. (2022). Impact of temperature, inoculum flow pattern, inoculum type, and their ratio on dry anaerobic digestion for biogas production, Scientific Reports, 12, 6162. https://doi.org/10.1038/s41598-022-10025-1

APHA-AWWA-WEF. (2005). Standard Methods for the examination of Water and Wastewater –APHA, AWWA & WEF-. 21th. Washington D.C., American Public Health Association/American Water Works Association / Water Environment Federation.

Krusir, G., Sagdeeva, O., Malovanyy, M., Shunko, H., Gnizdovskyi, O. (2020). Investigation of Enzymatic Degradation of Solid Winemaking Wastes. J. Ecol. Eng; 21(2), 72–79.

https://doi.org/10.12911/22998993/116345

Comments (0)

No login
gif