Lichen Exometabolites as Possible Precursors of Secondary Organic Aerosols

V. V. Gorshkov, Epiphytic Lichens as Indicators of Air Pollution. Methodological Recommendations (Kola Scientific Center, Apatity, 1991) [in Russian].

Google Scholar 

M. G. Opekunova, Bioindication of Pollution (St.-Petersburg University, St. Petersburg, 2016) [in Russian].

Google Scholar 

M. Saniewski, P. Wietrzyk-Pelka, T. Zalewska, and M. H. Wegrzyn, “Current radioactive fallout contamination along a trans-European gradient assessed using terricolous lichens,” Chemosphere 304 (2022). https://doi.org/10.1016/j.chemosphere.2022.135281

L. G. Byazrov, Lichens in Environmental Monitoring (Nauchnyi mir, Moscow, 2002) [in Russian].

M. E. Conti and G. Cecchetti, “Biological monitoring: lichens as bioindicators of air pollution assessment—a review,” Environ. Pollut. 114 (3), 471–492 (2001). https://doi.org/10.1016/S0269-7491(00)00224-4

Article  Google Scholar 

M. Glasius and A. H. Goldstein, “Recent discoveries and future challenges in atmospheric organic chemistry,” Environ. Sci. Technol. 50, 2754–2764 (2016). https://doi.org/10.1021/acs.est.5b05105

Article  ADS  Google Scholar 

J. Penuelas and M. Staudt, “BVOCs and global change,” Trends Plant Sci. 15, 133–144 (2010). https://doi.org/10.1016/j.tplants.2009.12.005

Article  Google Scholar 

M. Kulmala, “How particles nucleate and grow,” Science 302, 1000–1001 (2003). https://doi.org/10.1126/science.1090848

Article  Google Scholar 

M. Kulmala, H. Vehkamaki, T. Petaja, MasoM. Dal, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: A review of observations,” J. Aerosol Sci. 35 (2), 143–176 (2004). https://doi.org/10.1016/j.jaerosci.2003.10.003

Article  ADS  Google Scholar 

T. Petӓjӓ, K. Tabakova, A. Manninen, E. Ezhova, E. O’Connor, D. Moisseev, V. A. Sinclair, J. Backman, J. Levula, K. Luoma, A. Virkkula, M. Paramonov, M. Rӓty, M. Ӓijӓlӓ, L. Heikkinen, M. Ehn, M. Sipilӓ, T. Yli-Juuti, A. Virtanen, M. Ritsche, N. Hickmon, G. Pulik, D. Rosenfeld, D. R. Worsnop, J. Bӓck, M. Kulmala, and K.-M. Kerminen, “Influence of biogenic emissions from boreal forests on aerosol–cloud interactions,” Nat. Geosci. 15, 42–47 (2022). https://doi.org/10.1038/s41561-021-00876-0

Article  ADS  Google Scholar 

R. Dixon and D. Strack, “Phytochemistry meets genome analysis, and beyond,” Phytochemistry 62, 815–816 (2003). https://doi.org/10.1016/S0031-9422(02)00712-4

Article  Google Scholar 

J. S. Lamke and S. B. Unsicker, “Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions,” Oecologia 187, 377–388 (2018). https://doi.org/10.1007/s00442-018-4087-5

Article  ADS  Google Scholar 

M. Wink, “Introduction: Biochemistry, physiology, and ecological functions of secondary metabolites,” Ann. Plant Rev. 40, 1–19 (2010).

Google Scholar 

S. Bosch, Phenolic Acids: Composition, Applications and Health Benefits (Nova Science Publishers, New York, 2012).

Google Scholar 

A. Edtbauer, E. Y. Pfannerstill, A. P. P. Florentino, C. G. G. Barbosa, E. Rodriguez-Caballero, N. Zannoni, R. P. Alves, S. Wolff, A. Tsokankunku, A. Aptroot, M. D. Sá, A. C. De Araujo, M. Sorgel, S.M. De Oliveira, B. Weber, and J. Williams, “Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region,” Commun. Earth Environ. 2, 258 (2021). https://doi.org/10.1038/s43247-021-00328-y

Article  ADS  Google Scholar 

D. T. Hanson, S. Swanson, L. E. Graham, and T. D. Sharkey, “Evolutionary significance of isoprene emission from mosses,” Am. J. Bot. 86, 634–639 (1999). https://doi.org/10.2307/2656571

Article  Google Scholar 

J. Kesselmeier, “Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies,” J. Atmos. Chem. 39, 219–233 (2001). https://doi.org/10.1023/A:1010632302076

Article  Google Scholar 

O. M. Khramchenkova, “Hypogymnia physodes, Evernia prunastri, Cladonia arbuscula and Xanthoria parietina lichens as sources of the substances with antibacterial activity Byull. Bryanskogo Otdeleniya Russ. Botanicheskogo Obshchestva, No. 1, 50–58 (2017).

Google Scholar 

M. Piznak and M. Backor, “Lichens affect boreal forest ecology and plant metabolism,” S. Afr. J. Bot. 124, 530–539 (2019). https://doi.org/10.1016/j.sajb.2019.06.025

Article  Google Scholar 

S. Yousuf, M. I. Choudhary, and Atta-Ur-Rahman. Lichens: chemistry and biological activities, Stud. Nat. Prod. Chem. 43, 223–259 (2014). https://doi.org/10.1016/B978-0-444-63430-6.00007-2

Article  Google Scholar 

www.researchgate.net/publication/282766279_Atlas_of_ Images_of_Thin_Layer_Chromatograms_of_Lichen_ Substances. Cited November 29, 2022.

E. Calla-Quispe, H. L. Fuentes-Rivera, P. Ramirez, C. Martel, and A. J. Ibanez, “Mass spectrometry: A rosetta stone to learn how fungi interact and talk,” Life-Basel 10 (22) (2020). https://doi.org/10.3390/life10060089

R. Lindroth, “Atmospheric change, plant secondary metabolites and ecological interactions,” in The Ecology of Plant Secondary Metabolites: From Genes to Global Processes, Ed. by G. Iason, M. Dicke, and S. Hartley (Cambridge University Press, Cambridge, 2012). https://doi.org/10.1017/CBO9780511675751.008

Book  Google Scholar 

K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J. F. Muller, U. Kuhn, P. Stefani, and W. Knorr, “Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years,” Atmos. Chem. Phys. 14 (17), 9317–9341 (2014). https://doi.org/10.5194/acp-14-9317-2014

Article  ADS  Google Scholar 

J. K. Holopainen, M. Kivimaenpää, and S. A. Nizkorodov, “Plant-derived secondary organic material in the air and ecosystems,” Trends Plant Sci. 22 (9), 744–753 (2017). https://doi.org/10.1016/j.tplants.2017.07.004

Article  Google Scholar 

W. H. Chen, A. B. Guenther, X. M. Wang, Y. H. Chen, D. S. Gu, M. Chang, S. Z. Zhou, L. L. Wu, and Y. Q. Zhang, “Regional to global biogenic isoprene emission responses to changes in vegetation from 2000 to 2015,” J. Geophys. Res.: Atmos. 123 (7), 3757–3771 (2018).

Article  ADS  Google Scholar 

J. K. Holopainen, V. Virjamo, R. P. Ghimire, J. D. Blande, R. Julkunen-Tiitto, and M. Kivimaenpää, “Climate change effects on secondary compounds of forest trees in the Northern Hemisphere,” Front. Plant Sci. 9 (2018). https://doi.org/10.3389/fpls.2018.01445

M. Kramshoj, I. Vedel-Petersen, M. Schollert, A. Rinnan, J. Nymand, H. Ro-Poulsen, and R. Rinnan, “Large increases in Arctic biogenic volatile emissions are a direct effect of warming,” Nat. Geosci. 9 (5), 349–352 (2016). https://doi.org/10.1038/ngeo2692

Article  ADS  Google Scholar 

T. Yli-Juuti, T. Mielonen, L. Heikkinen, A. Arola, M. Ehn, S. Isokaanta, H. -M. Keskinen, M. Kulmala, A. Laakso, A. Lipponen, K. Luoma, S. Mikkonen, T. Nieminen, P. Paasonen, T. Petäjä, S. Romakkaniemi, J. Tonttila, H. Kokkola, and A. Virtanen, “Significance of the organic aerosol driven climate feedback in the boreal area,” Nat. Commun. 12, 5637 (2021). https://doi.org/10.1038/s41467-021-25850-7

Article  ADS  Google Scholar 

I. Ryde, C. L. Davie-Martin, T. Li, M. P. Naursgaard, and R. Rinnan, “Volatile organic compound emissions from subarctic mosses and lichens,” Atmos. Environ. 290, 5637 (2022). https://doi.org/10.1016/j.atmosenv.2022.119357

Article  Google Scholar 

A. Nordin, R. Moberg, T. Tonsberg, O. Vitikainen, A. Dalsatt, M. Myrdal, D. Snitting, and S. Ekman, Santesson’s Checklist of Fennoskandian Lichen-Forming and Lichenicolous Fungi. http://130.238.83.220/santesson/home.php.Evolutionsmussiet. Cited May 19, 2023.

Plant Life, Vol. 3, Algae. Lichens, Ed. by M.M. Gollerbakha (Prosveshchenie, Moscow, 1977) [in Russian].

Google Scholar 

Russian Lichen Flora: Biology, Ecology, Diversity, Distribution, and Methods for Studying Lichens, Ed. by M.P. Andreev and D.E. Gimel’brant (Tovarishchestvo nauchnykh izdanii KMK, Moscow, St. Petersburg, 2014) [in Russian].

T. K. Goryshina, Plant Ecology. Manual (Vysshaya shkola, Moscow, 1979) [in Russian].

Key to Russian Lichens, Is. 6, Alectoriaceae, Parmeliaceae, and Stereocaulonaceae, Ed. by N.S. Golubkova (Nauka, St. Petersburg, 1996) [in Russian]. https://reallib.org/reader?file=545722&pg=4. Cited August 19, 2023.

T. M. Kharpukhaeva, “About apothecia of Evernia mesomorpha and Evernia esorediosa,” Byull. Botanicheskogo Sada-Instituta DVO RAN, No. 19, 65–68 (2018). https://doi.org/10.17581/bbgi1908

M. P. Andreev, T. Akhti, L. V. Gagarina, and D. E. Gimel’brant, Russian Lichen Flora: Parmeliaceae Family (Tovarishchestvo nauchnykh izdanii KMK, Moscow, St. Petersburg, 2022), pp. 54–56 [in Russian].

P. N. Belyi, Lichens of Belarus Spruce Forests (Belaruskaya navuka, Minsk, 2016) [in Russian].

A. Blazhei and L. Shutyi, Plant Phenolic Compounds(Mir, Moscow, 1977) [in Russian].

M. N. Zaprometov, Phenolic Compounds: Distribution, Metabolism, and functions in plants (Nauka, Moscow, 1993) [in Russian].

Google Scholar 

M. J. Giertych, P. Karolewski, and L. O. de Temmerman, “Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus Nigra needles,” Water Air Soil Pollut. 110, 363–377 (1999). https://doi.org/10.1023/A:1005009214988

Article  ADS  Google Scholar 

A. Ahajji, P. N. Diouf, F. Aloui, I. Elbakali, D. Perrin, A. Merlin, and B. George, “Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives,” Wood Sci. Technol. 43 (1), 69–83 (2009). https://doi.org/10.1007/s00226-008-0208-3

Article  Google Scholar 

State Report “On the state of the Environment of the Komi Republic in 2020” (Minprirody Respubliki Komi, Syktyvkar, 2021) [in Russian]. https://mpr.rkomi.ru/uploads/documents/gosdoklad_2020_elektronnaya_versiya_v2_2021-06-22_08-45-11.pdf. Cited December 2, 2022.

N. A. Tyukavkina and Yu. I. Baukov, Bioorganic Chemistry (Drofa, Moscow, 2004) [in Russian].

M. P. Tentyukov, V. I. Mikhailov, D. A. Timushev, B. D. Belan, and D. V. Simonenkov, “Granulometric composition of settled aerosol material and ratio of phenolic compounds in different-age needles,” Atmos. Ocean. Opt. 34 (3), 222–228 (2021).

Article  Google Scholar 

M. P. Tentyukov, B. D. Belan, D. V. Simonenkov, and V. I. Mikhailov, “Generation of secondary organic aerosols on needle surfaces and their entry into the winter forest canopy under radiometric photophoresis,” Atmos. Ocean. Opt. 35 (5), 490–496 (2022).

Article  Google Scholar 

S. Imada, K. Acharya, and N. Yamanaka, “Short-term and diurnal patterns of salt secretion by Tamarix ramosis-sima and their relationships with climatic factors,” J. Arid Environ. 83 (8), 62–68 (2012). https://doi.org/10.1016/j.jaridenv.2012.03.006

Article  ADS  Google Scholar 

A. Singer, W. F. A. Kirsten, and C. Buhmann, “A proposed fog deposition mechanism for the formation of salt efflorescences in the Mpumalanga Highveld, Republic of South Africa,” Water Air Soil Pollut. 109 (1-4), 313–325 (1999).

Article  ADS  Google Scholar 

K. R. Wieder, M. A. Vile, D. H. Vittf, K. D. Scott, B. Xu, J. C. Quinn, and C. M. Albright, “Can plant or lichen natural abundance 15N ratios indicate the influence of oil sands N emissions on bogs?,” J. Hydrology: Regional Studies 101030 (2022). https://doi.org/10.1016/j.ejrh.2022.101030

M. Yu. Arshinov and B. D. Belan, “Diurnal behavior of the concentration of fine and ultrafine aerosol,” Atmos. Ocean. Opt. 13 (11), 909–916 (2000).

Google Scholar 

Comments (0)

No login
gif