Quantitative Digital Subtraction Angiography Measurement of Arterial Velocity at Low Radiation Dose Rates

Gardiner GA, Sullivan KL, Halpern EJ, Parker L, Beck M, Bonn J, et al. Angiographic assessment of initial balloon angioplasty results. J Vasc Interv Radiol. 2004;15:1081–7. https://doi.org/10.1097/01.rvi.0000137398.73970.d5.

Article  PubMed  Google Scholar 

Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE. Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol. 2013;201:611–7. https://doi.org/10.2214/ajr.12.10375.

Article  Google Scholar 

de Vries AR, Engels PH, Overtoom TT, Saltzherr TP, Geyskes BG. Interobserver variability in assessing renal artery stenosis by digital subtraction angiography. Diagn Imag Clin Med. 1984;53:277–81.

Google Scholar 

Paul JF, Cherrak I, Jaulent MC, Chatellier G, Plouin PF, Degoulet P, et al. Interobserver variability in the interpretation of renal digital subtraction angiography. Am J Roentgenol. 1999;173:1285–8. https://doi.org/10.2214/ajr.173.5.10541106.

Article  CAS  Google Scholar 

Koelemay MJW, Legemate DA, Reekers JA, Koedam NA, Balm R, Jacobs MJHM. Interobserver variation in interpretation of arteriography and management of severe lower leg arterial disease. Eur J Vasc Endovasc. 2001;21:417–22. https://doi.org/10.1053/ejvs.2001.1328.

Article  CAS  Google Scholar 

Lewandowski RJ, Wang D, Gehl J, Atassi B, Ryu RK, Sato K, et al. A Comparison of chemoembolization endpoints using angiographic versus transcatheter intraarterial perfusion/MR imaging monitoring. J Vasc Interv Radiol. 2007;18:1249–57. https://doi.org/10.1016/j.jvir.2007.06.028.

Article  PubMed  Google Scholar 

Periyasamy S, Hoffman CA, Longhurst C, Schefelker GC, Ozkan OS, Speidel MA, et al. A quantitative digital subtraction angiography technique for characterizing reduction in hepatic arterial blood flow during transarterial embolization. Cardiovasc Inter Rad. 2020. https://doi.org/10.1007/s00270-020-02640-0.

Article  Google Scholar 

Hoffman C, Periyasamy S, Longhurst C, Medero R, Roldan-Alzate A, Speidel MA, et al. A technique for intra-procedural blood velocity quantitation using time-resolved 2D digital subtraction angiography. Cvir Endovascular. 2021;4:11. https://doi.org/10.1186/s42155-020-00199-y.

Article  PubMed  PubMed Central  Google Scholar 

Wagner MG, Whitehead JF, Periyasamy S, Laeseke PF, Speidel MA. Spatiotemporal frequency domain analysis for blood velocity measurement during embolization procedures. Méd Phys. 2023. https://doi.org/10.1002/mp.16715.

Article  PubMed  Google Scholar 

Lin EY, Lee R-C, Guo W-Y, Wu FC-H, Gehrisch S, Kowarschik M. Three-dimensional quantitative color-coding analysis of hepatic arterial flow change during chemoembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2018;29:1362–8. https://doi.org/10.1016/j.jvir.2018.04.012.

Article  PubMed  Google Scholar 

Gaba RC, Wang D, Lewandowski RJ, Ryu RK, Sato KT, Kulik LM, et al. Four-dimensional transcatheter intraarterial perfusion MR imaging for monitoring chemoembolization of hepatocellular carcinoma: preliminary results. J Vasc Interv Radiol. 2008;19:1589–95. https://doi.org/10.1016/j.jvir.2008.08.010.

Article  PubMed  PubMed Central  Google Scholar 

Larson AC, Wang D, Atassi B, Sato KT, Ryu RK, Lewandowski RJ, et al. Transcatheter intraarterial perfusion: MR monitoring of chemoembolization for hepatocellular carcinoma—feasibility of initial clinical translation. Radiology. 2008;246:964–71. https://doi.org/10.1148/radiol.2463070725.

Article  PubMed  Google Scholar 

Pearl MS, Torok C, Wang J, Wyse E, Mahesh M, Gailloud P. Practical techniques for reducing radiation exposure during cerebral angiography procedures. J NeuroInterventional Surg. 2015;7:141. https://doi.org/10.1136/neurintsurg-2013-010982.

Article  Google Scholar 

de Ruiter QM, Gijsberts CM, Hazenberg CE, Moll FL, van Herwaarden JA. Radiation awareness for endovascular abdominal aortic aneurysm repair in the hybrid operating room. an instant patient risk chart for daily practice. J Endovasc Ther. 2017;24:425–34. https://doi.org/10.1177/1526602817697188.

Article  PubMed  Google Scholar 

Whitehead JF, Hoffman CA, Periyasamy S, Laeseke PF, Speidel MA, Wagner MG. A motion compensated approach to quantitative digital subtraction angiography. Méd Imaging 2022 Phys Méd. 2022. https://doi.org/10.1117/12.2611816.

Article  Google Scholar 

Whitehead JF, Hoffman CA, Periyasamy S, Laeseke PF, Speidel MA, Wagner MG. Motion-compensation approach for quantitative digital subtraction angiography and its effect on in-vivo blood velocity measurement. JMI. 2024. https://doi.org/10.1117/1.jmi.11.1.013501.

Article  PubMed  Google Scholar 

Whitehead JF, Laeseke PF, Periyasamy S, Speidel MA, Wagner MG. In silico simulation of hepatic arteries: an open-source algorithm for efficient synthetic data generation. Méd Phys. 2023;50:5505–17.

PubMed  Google Scholar 

Whitehead JF, Nikolau EP, Periyasamy S, Torres LA, Laeseke PF, Speidel MA, et al. Simulation of hepatic arteries and synthesis of 2D fluoroscopic Images for interventional imaging studies. Med Imaging 2022 Phys Medical Imaging. 2020. https://doi.org/10.1117/12.2549570.

Article  Google Scholar 

Comments (0)

No login
gif