Circular RNA in cancer

Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

Article  CAS  PubMed  Google Scholar 

Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, H. et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574, 707–711 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shuai, S. et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 574, 712–716 (2019).

Article  CAS  PubMed  Google Scholar 

Wedge, E. et al. Impact of U2AF1 mutations on circular RNA expression in myelodysplastic neoplasms. Leukemia 37, 1113–1125 (2023).

Article  CAS  PubMed  Google Scholar 

Conn, V. M. et al. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell 41, 1309–1326.e10 (2023). This paper presents the first example of an endogenous RNA carcinogen; a circular RNA able to drive oncogenic chromosomal translocations in acute leukaemia.

Article  CAS  PubMed  Google Scholar 

Trsova, I. et al. Expression of circular RNAs in myelodysplastic neoplasms and their association with mutations in the splicing factor gene SF3B1. Mol. Oncol. 17, 2565–2583 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

Article  CAS  PubMed  Google Scholar 

Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013). Together with Memczak et al. (2013), this paper invigorated the circular RNA (circRNA) research field by identifying functional circRNAs acting as microRNA sponges.

Article  CAS  PubMed  Google Scholar 

Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013). Together with Hansen et al. (2013), this paper invigorated the circular RNA (circRNA) research field by identifying functional circRNAs acting as microRNA sponges.

Article  CAS  PubMed  Google Scholar 

Bradley, R. K. & Anczuków, O. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer 23, 135–155 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2023).

Article  CAS  PubMed  Google Scholar 

Chen, L.-L. & Yang, L. Regulation of circRNA biogenesis. RNA Biol. 12, 381–388 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Conn, V. M. et al. SRRM4 expands the repertoire of circular RNAs by regulating microexon inclusion. Cells 9, 2488 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiang, T.-W. et al. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucleic Acids Res. 52, D115–D123 (2024).

Article  PubMed  Google Scholar 

Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881.e13 (2019). Vast profiling of circular RNAs (circRNAs) across more than 2,000 samples from patients with cancer, which produced a searchable public database called miOncoCirc to aid in the identification of circRNA biomarkers.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, D. et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol. Cell 68, 940–954.e3 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guarnerio, J. et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165, 289–302 (2016).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci. China Life Sci. 63, 1429–1449 (2020).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Interior circular RNA. RNA Biol. 17, 87–97 (2020).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Exon–intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

Article  PubMed  Google Scholar 

Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).

Article  PubMed  Google Scholar 

Talhouarne, G. J. S. & Gall, J. G. Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc. Natl Acad. Sci. USA 115, E7970–E7977 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

Article  CAS  PubMed  Google Scholar 

Lu, Z. et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21, 1554–1565 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, Y., Wang, J. & Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 4 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L.-L. et al. A guide to naming eukaryotic circular RNAs. Nat. Cell Biol. 25, 1–5 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ashwal-Fluss, R. et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

Article  CAS  PubMed  Google Scholar 

Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013). A seminal paper identifying circular RNAs (circRNAs) as an abundant RNA family, with insight into Alu-driven circRNA biogenesis.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

Article  CAS  PubMed 

Comments (0)

No login
gif